INSTALLATION ENVIRONMENTAL ASSESSMENT

IOWA ARMY AMMUNITION PLANT MIDDLETOWN, IA

12 October 1995

Prepared by:

Keith Miller

Senior Scientist M&H-SM Co., Inc.

Reviewed By:

R. E. Durbin

Environmental Engineer

M&H-SM Co., Inc.

Reviewed by:

R. A. Herman

Security Officer

ACO Staff

R. O. Haines Safety Manager

ACO Staff

A Bayter

Chief Engineer ACO Staff

Approved By:

J. R. Stefanovich

TTC. OD

Commanding Officer

J. E. Shannan Environmental, Safety & Health Division Manager

M&H-SM Co., Inc.

にはいのけるとしば

TABLE OF CONTENTS

SECTIO	<u>PAGE</u>
	Cover Page
	Signature Page
	Table of Contents i & ii Index of Tables
I.	Introduction
II.	Purpose and Need for the Proposed Action
III.	Probable Impact of the Installation Activities on the Environment
IV.	Alternatives considered
V.	Affected environment (baseline conditions) 25 A. Soil Types B. Natural Resources C. Climate D. Biotic Community E. Archeological, Historical, and Recreational Sites F. Air Quality G. Water

TABLE OF CONTENTS cont'd

VI.		ental consequences of the proposed alternatives	29
	A.	Conformity or Conflict With other	
		Land-Use Plans, Politics and Controls	
	В.	Air Quality Consequences	
	C.	Water Quality Consequences	
	D.	Consequences to Archeological, Historical, and Recreational Sites	
	E.	Consequences to Wildlife	
	F.	Consequences to the land	
	G.	Consequences to local residence	
VII.	Listing of	Agencies and Persons consulted	34
WTTT	Finding		35

INDEX OF TABLES

DESCRIPTION

I Proximity to Major Cities II Proximity from Local Communities III IAAAP Sewage Treatment Facilities IV Present Rate and Mobilization Rate of Effluent Waters V IAAAP Recycled Materials VI Contracted Pest Control Chemicals VII IAAAP Maintained Pest Control Chemicals

INDEX OF ENCLOSURES

TITLE

Enclosure No.

- 1. Orientation Map, Mason & Hanger-Silas Mason Co., Inc., Sketch No. SK-G-294, Sheet 1 of 1, Rev. Orig.
- Land Usage Map, Mason & Hanger-Silas Mason Co., Inc., Drawing No. G/W-725, Sheet 1 of 1, Rev. Orig.
- 3. Environmental Program Plan for Iowa Army Ammunition Plant AP&P No. 41 dated 19 June 1995
- 4. Iowa Department of Natural Resources National Pollutant Discharge Elimination System (permit) Excerpt consisting of 18 pages
- 5. Iowa Operating Permit Application Part 1 Form 4.0 Emission Unit Actual Operation and Emissions Explosive Waste Incinerator
- 6. Iowa Operating Permit Application Part 1 Form 4.0 Emission Unit Actual Operations and Emissions Contaminated Waste Processor
- 7. Installation Restoration Program Site Summary Chart
- 8. Iowa Operating Permit Application For Production Lines 1, 2, 3, 4B, 800, 9 and Equipment in Other Areas

I. Introduction:

The purpose of this Environmental Assessment is to address the potential environmental effects of on going operations as well as prospective near future operations to be performed here at the Iowa Army Ammunition Plant (IAAAP). It is necessary to assess the favorable and/or adverse impacts of these operations, and to list projects planned to reduce adverse effects on the surrounding ecosystem. Total Plant operations will be evaluated on the basis of current and full (when the affect can be calculated with reasonable accuracy) production in relation to pollutant emissions. Full production will be considered that rate of production at which the IAAAP would be under, during the conditions of baseline and mobilization as stated in the latest available mobilization plan (IAAAP Mobilization Master Plan, November 1989).

The IAAAP is located in the southeastern portion of the State of Iowa, (see Enclosure No. 1). The Plant covers over 19,000 acres. For proximity to major cities, see Table I below and distance from local communities, see Table II below.

TABLE I Proximity to Major Cities

City	Population	Direction	Distance Miles
Des Moines, IA	193,187	WNW	157
Cedar Rapids, IA	108,751	N	105
Davenport, IA	95,333	NE	90
Iowa City, IA	59,738	N	75
Ottumwa, IA	24,488	WNW	75
Keokuk, IA	12,451	S	45

TABLE II

Distance from Local Communities

City	Population	Direction	Distance Miles
Augusta	100	S	0
Burlington	27,208	E	3
Danville	926	NW	4
Denmark	400	SW	2
Ft. Madison	11,618	S	10
Middletown	386	N	0
New London	1,922	NW	11
West Burlington	3,083	E	2

- A. Enclosure No. 2 is the installation Land Usage Map.
- B. The Installation has its own sewage treatment plants, cafeterias, laundry, maintenance shops, hospital (clinic), and residential neighborhood. The manufacturing facilities include many production and support buildings (change houses for employees, office buildings, mechanical equipment buildings, storage warehouses, and steam generating plants for local steam sources within the manufacturing groups). The Main Heating Plant (Building No. 500-139) is coal fired. The Building No. 1-62 Heating Plant is fueled by Natural Gas and can also be fueled by No. 2 Diesel Fuel. The Building No. 1-62 Heating Plant is used during the summer months (May September) when the reduced need for heat/process steam does not allow efficient operation of the coal fired main heating plant at Building No. 500-139.
- C. Water is supplied by the City of Burlington. Chlorination is added to the water within the Installation boundaries. Safe Drinking Water Standards are met. A 1-million gallon emergency reservoir, eight wells, and six elevated 100,000 gallon water storage tanks are situated throughout the area.
- D. Two lakes and 35 ponds are located throughout the reservation.
- E. Materials and personnel are transported throughout the Installation over an internal network of 149 miles of road and 102 miles of railroad track.
- F. Production at the IAAAP is performed on the Installation's 9 production lines. At present, several lines are inactive and production is limited to 2 shifts, 10 hours, 4 days per week. During a period of military confrontation (mobilization), the Plant has and is capable of operating 3 shifts, 8 hours, 7 days per week.
- G. Within the Plant boundaries are seven cemeteries and two one-room school houses. The two schools remain in their original location, and two of the cemeteries are still in use.
- H. The IAAAP, formerly Iowa Ordnance Plant, was constructed between January 1941 and February 1942. The U.S. Atomic Energy Commission took over and operated Line 1 facilities. Numerous new facilities were added within Line 1 by the AEC. The AEC announced in 1973 that it was phasing out of the Plant. These facilities reverted back to Army control 1 July 1975. During 1969, 11 acres west of the Administration Area of the Plant were transferred to the 5th Army to be used for a U.S. Army Reserve Center. This center is used for meetings and business necessary to the U.S. Army Reserve.

II. Purpose and Need for the Proposed Action:

Iowa Army Ammunition Plant (IAAAP) is a Government-Owned, military industrial installation under the jurisdiction of Headquarters, U.S. Industrial Operations Command (IOC) operated by Mason & Hanger-Silas Mason Co., Inc. under Facilities Contract No. DAAA09-94-E-0005. The primary mission of this plant is to Load, Assemble, and Pack (LAP) ammunition items. The IAAAP produces a large variety of explosive loaded components and end items such as small boosters, mines, cratering charge, artillery rounds, missile warheads and cluster bombs. The IAAAP also has research and development capabilities and performs some depot mission work. The IAAAP performs demilitarization of ammunition items by disassembly (no open detonation) and in 1993 was named the Midwest Area Demil Facility (MADF).

Since Mason & Hanger operates the installation under a Facility Contract arrangement with the Army, areas not needed by Mason & Hanger may be made available to commercial users on a subcontract basis. Support services including fire protection, safety, security, engineering, analytical and environmental are also available on a subcontract basis to commercial users on the installation. Analytical services are also being provided to offsite commercial accounts on a contract basis. The subcontract with commercial users will benefit surrounding communities by providing additional employment and the revenue from the subcontracts will act to reduce overhead costs. Presently, Production Lines 4A, 5B, 6 and 8 are under consideration by commercial users for possible use under the subcontract arrangement. Mason & Hanger uses the IAAAP facilities to produce ammunition items under third party contracts to firms such as Olin, Alliant, Aerojet, Textron and others. Office space in Building No. 100-101 is leased to the Iowa Ordnance Plant Federal Credit Union.

Mason & Hanger determined the installation housing area can not be operated at a profit. Therefore, a divestiture action is currently in process where the Army proposes to make available to the City of Middletown, Iowa 112.58 acres of land and buildings consisting of the installation housing area (with the exception of House Nos. 1 and 2), recreational building and Drulis Park. At this time, the Army and the City of Middletown are determining the fair market value of the housing area. Upon determination of the fair market value, the transfer of ownership of the housing area from the Army to the City of Middletown, Iowa is expected to be completed.

III. Probable Impact of the Installation Activities on the Environment

AP&P No. 41 in its most current revision governs all phases of the Environmental Program at the IAAAP. A copy of this document is provided as Enclosure No. 3

- A. Overall Economic effects:
 - 1. IAAAP Gross Wages Paid in 1994: \$28,300,730.65
 - 2. Des Moines County Gross Wages Paid in 1994: \$506,398,249
 - IAAAP 1994 Average Hourly (Weighted) Wage: \$11.87
 - 4. Des Moines County 1994 Average Hourly Wage Rate: \$10.10
 - 5. IAAAP 1994 Average No. of Employees: 1014
 - 6. Des Moines County 1994 Average No. of Employees: 22,680
 - 7. The IAAAP provides approximately *3% of Des Moines County jobs and approximately *4% of Des Moines County wages. Due to the likelihood of an increase in the proportion of workers coming from outside of Des Moines County during a sudden extreme escalation of employment at the IAAAP, it is difficult to estimate these percentages for a mobilization condition.

*These percentages are not computed directly from the IAAAP and Des Moines County rates because a large number of employees at the IAAAP live outside of Des Moines county.

- 8. IAAAP Employment Breakdown (as of March 1994):
 - (a) Salaried Employees: 279
 - (b) Hourly Employees: 753
 - (c) Department of Army Civilians: 25
 - (d) Military Personnel: 2
 - (e) Government Housing:
 - (1) Houses Available: 40 Houses total with 40 livable (3 are being excessed).
 - (2) Average Occupancy over the Past Five Years: 95+%.
 - (f) Role Played by Local Contractors and Suppliers:
 Many Projects at this Installation are
 subcontracted to local contractors.
 - (g) Concentration of Business Catering to Military: There are no business entities on or near the Installation which depend upon the installation for a noticeable portion of their revenues.

- B. Plant-wide Utilities usage and the affect on the community:
 - Fossil Fuels (CY94 Adjusted):

Annual	Fossil	Fuel	Consumption	bv	Type	and	Usage	Amount
1211100-	1000-1		0011D 0 11 P 0 T 0 11	~ ,	-12-	~	05450	

* Fuel	Used	Units	Usage (Approx.)
Gasoline (Unleaded)	144,299	GALS	Mobile
Diesel Fuel No. 1	0	BBLS	Mobile
Diesel Fuel No. 1	0	BBLS	Process Steam Generation Space Heating
Diesel Fuel No. 2	397	BBLS	Process
Fuel Oil No. 6	3,557	BBLS	Steam Generation
Coal	388,278	MBTU	Steam Generation
	15,887	tons	

* Mobilization requirements would not be expected to significantly affect the availability of these fuels to local residence.

2. Electric Service:

- a. CY94 consumption of electricity was approximately 20,863 Mega-watt-hours.
- b. The IAAAP purchases electricity from Iowa Electrical Service (IES). Although the IAAAP is a large consumer of electricity, the amount of electricity it uses as a proportion of total IES production is small. The absence of IAAAP consumption would not seriously affect IES's profitability, nor would the increase in demand caused by a mobilization hinder IES's ability to supply the needs of its customers.

3. Water Supply:

- a. All water consumed by this Installation is purchased from the City of Burlington. The Plant was billed for 204,340,000 gallons in 1994 and sold approximately 12,945,000 gallons to the City of Middletown. This indicates the total 1994 water consumption for the Installation was approximately 191,395,000 gallons. The Installation Contract with the City of Burlington stipulates a maximum monthly usage of not more than 50 million gallons and a maximum daily usage of not more than 3,000,000. Maximum daily Installation water use has never topped 1.5 million gallons.
- b. The City of Burlington produced and distributed 1,841,000,000 gallons of water in 1994. Of this, the Installation consumed 12.8%. At approximately 1.85 billion gallons/year or 5 million gallons/day, the local water department is running at 40% capacity and even the present total capacity is fairly readily expandable to nearly 22.5 million gallon/day. Therefore, it is expected that under mobilization this Installation would not affect the community's water supply.

4. Wastewater Treatment and Stormwater Runoff

In accordance with Iowa NPDES Permit No. 2900900 effective 1 July 1995 - 30 June 2000, IAAAP operates facilities for the treatment of sewage, explosive contaminated wastewater, coal pile run-off water and discharges the treated water into the installation stream system in compliance with the parameter limits of the permit. The permit also requires monitoring of stormwater runoff from the Explosive Disposal Area and operations area. The parameter limits are contained in the first 18 pages of the permit which are contained in Enclosure No. 4. The stormwater runoff must be monitored for all the parameters listed in the permit plus oil and grease.

Sanitary waste treatment is currently provided by the two secondary sewage plants and eight septic tank systems. This Installation is presently using its Sewage Treatment Plants at about 38% of capacity.

	able III	
	AGE TREATMEN	NT
Item	Present Capacity	Present Use
Main Sewage Treatment Plant	1,000,000 GPD	400,000 GPD
Line 3A Sewage Treatment Plant	50,000 GPD	-0- GPD

At both Installation Sewage Treatment Plants, water is given three levels of treatment; primary, secondary and tertiary. Industrial waste water is present as: that contaminated with explosives. Systems for the removal of explosives contamination from industrial waters by sedimentation, filtration, and adsorption of dissolved explosives through activated carbon, exist for all operating load lines. Final treatment of explosive contaminated water by activated carbon columns removes practically all traces of explosives from the effluent.

Since treatment of water and control of sources of contamination, all streams within the plant area have remained clean. According to IAAAP Master Plan, November 1989, the facility has sufficient waste water treatment facilities to meet the demands of a baseline mobilization. Therefore, effluents produced by waste water treatment at the IAAAP do not now, nor are they expected to under baseline mobilization, negatively affect the local environment (see Table IV for quantities produced).

	TABLE	E IV	
PRESENT RATE AN	D MOBILIZATIO	N RATE OF EFFLUEN	T WATERS
Location	Present Rate	* Mobilization Rate	Type of Pollutant
Main Sewage Treatment Plant	357,000 GPD	800,000 GPD	Sewage
3A STP	4,000 GPD	60,000 GPD	Sewage
Line 1	1,322 GPD	28,800 GPD	Pink Water
Line 2	1,473 GPD	57,600 GPD	Pink Water
Line 3	1,592 GPD	57,600 GPD	Pink Water
Line 3A	0	85,800 GPD	Pink Water
Line 5A	0	28,800 GPD	Pink Water
Line 5B	0	28,800 GPD	Pink Water
Line 6	0	0	Sump Water
Line 7	0	0	Laid Away
Line 800	0	115,200 GPM	Pink Water
Line 9	0	800 GPD	Sump Water

Baseline mobilization effluent rate as projected in the IAAP Mobilization Master Plan, November 1989.

C. Solid Waste Disposal:

1. Landfill Operations:

The inert disposal area ceased operations as of 30 September 1992 and a closure to be performed by U.S. Army Corps of Engineers - Omaha is expected to be initiated in 1995. The primary effort for inert disposal is now directed toward recycling. Therefore the required load on the local Des Moines County, Iowa county landfill, under current or baseline mobilization, is not expected to place a strain on local waste disposal space.

Recycling Operations:

A collection, segregation, and stockpile program is in place for salable or recoverable items; such as, scrap lumber, plastic, jars, tin cans, and waxed cardboard. As few items as possible are sent to the sanitary landfill. The scrap is compacted if required for shipment, and sold for reprocessing. Listed below (in Table VI) are the types of wastes, the quantities expressed in tons, and the proceeds obtained from the sale of waste materials.

	Table	VI	
IAAP	Recycled	Materials	

Category	Weight	in Tons	Proceeds	(Dollars)
	1993	1994	1993	1994
* Paper	0	0 *	0 *	0 *
Corrugated Cardboard	169.3	133.6	85	67
Scrap Lumber	50.0	20.0	63	105
Used Wood Boxes	18.7	127.3	823	4,256
Scrap Rags	5.0	0	1,316	0
Ferrous Metal	627.2	732.5	33,816	58,597
Non ferrous Metal	2.8	35.5	850	28,407
Rubber Tires	0 *	0 *	0 *	0 *
Drums	0 *	0 *	0 *	0 *
Explosive Scrap	115.8	172.3	85,626	104,164
TOTALS	988.8	1,221.2	\$122,624	\$195,596

^{*} Materials collected but not sold in 1993 or 1994.

- a. In 1994, 155,226 grams of silver collected from the discharge water at the X-ray facilities during 1994 was shipped off site for recovery.
- In an effort to further reduce solid waste, the b. Iowa Department of Natural Resources performed a Waste Reduction Assessment at the IAAAP in 1991 in conjunction with the Waste Reduction Assistance Program (WRAP) sponsored by the State of Iowa with funding assistance from the USEPA. The assessment was performed by retired industry professionals or representatives of the Waste Management Authority Division of the Iowa Department of Natural The purpose of the assessment was to Resources. further reduce waste through source reduction, recycling, energy recovery, treatment and disposal. Upon completion of the assessment, a final report was provided to IAAAP containing an overall assessment. The assessment concluded that the IAAAP is doing a very satisfactory job of managing and reducing solid wastes.

3. Incineration:

There are two incinerators in use being the Explosive Waste Incinerator (EWI) and the Contaminated Waste Processor (CWP) which are located in the Explosive Disposal Area. The EWI is an EPA Resource Conservation and Recovery Act (RCRA) regulated unit operated under conditions of Hazardous Waste Management Permit No. IA7213820445. The CWP is exempt from EPA RCRA regulations as the EPA determined the materials treated (paper, cardboard, wood, etc.) and flashing (by fire) of metals to remove explosive contamination are not hazardous waste as they are only lightly contaminated by explosives. or CWP were installed under construction permits issued by the Iowa Department of Natural Resources and have successfully completed Clean Air Act compliance testing. All ash from the EWI is handled as hazardous waste and is shipped off-site for disposal in an EPA approved hazardous waste landfill. The CWP ash is tested for EPA TCLP metals content. The ash exceeding the TCLP limits for metals is shipped off-site for disposal in an EPA approved landfill while ash not exceeding the TCLP limits is disposed of in the Des Moines County, Iowa sanitary landfill as nonhazardous waste. The remaining incinerator, a Deactivation Furnace, has not been in use for several years because it could not meet RCRA standards and has now completed of an EPA RCRA closure. Primer, detonators and fuzes previously treated in the Deactivation Furnace may

be treated in the closed chamber recycling mechanism at Building No. 800-61 or the closed chamber functioning mechanism at Building No. 3A-20-1. These units were installed under Iowa Department of Natural Resources Construction Permits. An additional, larger CWP unit is planned to be constructed for the IAAAP to reduce the backlog of materials awaiting treatment and to flash (by fire) larger pieces of equipment that cannot be handled in the existing CWP. The above incinerators/mechanisms are considered to be satisfactory to meet the mobilization requirements of the Mobilization Master Plan.

The incineration facilities currently in operation at the IAAAP do not, and those placed on line in the future will not have a significant impact on the local environment. The air emission from the Explosive Waste Incinerator and Contaminated Waste Processor appearing on the Iowa Operating Permit Application, Part 1 Form 4.0 Emission Unit Actual Operations and Emissions are provided as Enclosure No. 5 and 6 respectively.

4. Open Burning:

The State of Iowa has not allowed routine open burning of explosive waste or explosive contaminated waste since 1982 which coincided with the explosive waste incinerator and the Contaminated Waste Processor being placed in operation. A variance from the State of Iowa Air Rules must be obtained prior to performing open burning of the above materials. However, the variances are allowed on a very infrequent basis and have become increasingly difficult to obtain. Open burning is allowed under State of Iowa Rules for the control of vegetation. This is particularly important in the test fire area where hot pieces of metal from test fire operations have the potential to set surrounding vegetation on fire and potentially endanger nearby forested areas. Therefore, open burning is performed on a very limited basis and has a minimal negative impact on the local environment.

D. Contaminated Areas:

Reference:

Installation Action Plan for 1995 (available at the installation) contains the Installation Restoration Program sites requiring investigation as contaminated areas. The sites currently identified and subject to revision are contained in Enclosure No. 7 Installation Restoration Program Site Summary Chart.

E. Air Emissions from Production Operations and Other Areas

Air emissions from production operations and other areas are contained in Enclosure No. 8 Iowa Operating Permit Application Forms for Production Lines 1, 2, 3, 4B and 9 and equipment in other areas.

F. Miscellaneous and Nuisance Problems:

1. Noise:

A major source of boundary noise pollution is the test fire area. There are no practical corrective measures to contain this noise other than an enclosed test fire chamber. The cost is prohibitive, and for the amount of firing done, uneconomical. The management approach to test fire noise is to protect the test firing mission of the installation by minimizing noise impacts on land outside of the installation. In accordance with AR 200-1 paragraph 7-5, the Installation Compatible Use Zone (ICUZ) Study for the IAAAP was revised on 1 March 1995 and reflects the noise contours for current test fire items. The normally unacceptable Zone II and unacceptable Zone III contours do not extend beyond the installation boundary. The ICUZ Study is based upon an assessment performed by United States Army Center for Health Promotion and Preventative Medicine (CHPPM) entitled: Environmental Noise Consultation, Number 52-34-2789-95 in which noise contours were developed by computer models for the current test fire items.

Occasional complaints are received from the surrounding community. Noise complaints from local residents are directed to the M&H Environmental Department. The complaints are logged and an effort is made to discover the noise source (some noise sources are found to originate beyond the IAAAP boundaries). If the noise did originate from within the IAAAP, an attempt is made to discern the reason for its severity in an effort to temper the noise from future tests (for example was the increase in noise due to weather conditions). A pamphlet has been prepared to address the effect that is felt by the testing and is made available to citizens reporting noise complaints.

2. Noxious Odors:

There are no noxious odors at this Installation.

3. Automobiles:

All government owned vehicles used at the IAAAP receive regular maintenance. Fuel for mobile usage is of high quality and whenever possible, products such as Ethanol are used in an effort to lower the amount of HAPs emitted into the air.

As a result, the current use of automobiles at the IAAAP does not negatively affect the local environment. The increase in mobility needs under baseline mobilization would not be large enough to be of consequence. The increase in employment would elevate the traffic in the community, but because of improved fuel quality, vehicle emission systems, and acceptance to car pooling; the impact on the local environment would not be significant.

G. Test Ranges/Sites:

The pistol range is used occasionally for security guard target practice and training. The test fire area is available as production support and is utilized for the test requirements of potentially all munitions produced at the IAAAP.

The static and horizontal test fire range at the test fire area is policed regularly for armor, steel and various other parts with potential for recycle. There has been no definite evidence found which would indicate any damage to wildlife or terrain due to testing.

H. Pest Control Measures:

Pest control measures are performed primarily by a sub-contract arrangement with an approved pest control company. The pest control company does not store or dispose of chemicals on the installation. Pest control chemicals are brought on the installation on an as needed basis and excess amounts are removed from the installation for off-site disposition by the pest control company. In the evnet of a spill on-site, the Spill Prevention Control and Countermeasure Plan contains a spill procedure for pesticides. The contracted company is approved for application of the following pest control chemicals (see Table VI):

Table VI

Contracted Pest Control Chemicals

Anticoagulant	0.005-0.05%	Bait - Rodenticide (Dry)	50 Lbs/yr
Baygon (Pro-Poxur)	1.0%	Bait - Emulsion/Solution	5 Gals/Yr
Diazinon	0.5%-1.0%	Emulsion/Solution Dust	10 Gals/Yr
Dursban (Chlor-pyrifos)	0.25-0.5%	Emulsion/Solution	10 Gals/Yr
Pyrethrum, Synergized	0.4%-0.6%	Aerosol	5 Gals/Yr
2-4-D	4 Lbs.	Acidic Equivalent/Gal.	30 Gals/Yr
Korvar I	80%		1800 Gals/Yr

H. Pest Control Measures: (Cont'd)

A small inventory of pest control chemicals in spray cans is maintained at Central Stores for issue to authorized personnel for use by employees to combat crawling insects, wasps and hornets encounterd in several of the work environments. These chemicals are as follows (See Table VII):

Table VII

IAAAP Maintained Pest Control Chemicals

Stock Number		Description	Average Annual Usage
1.	19-00-800-00	Spray, Wasp and Hornet, 15 Oz. can	50 cans
2.	19-00-800-10	Spray, Insect Repellant, Cutters (New Formula) 6 Oz. cans	35 cans
3.	19-00-800-60	Spray for Crawling Insects. Sparton CR-2 - 16 Oz. cans	13 cans

I. Storage Areas:

All storage sites for fuel, oil, and hazardous material storage sites and their storage containment units are monitored regularly and are handled as required under the regulations set forth by the EPA. As a result, it is not expected that the storage of fuel, oil, and hazardous materials at the IAAAP will result in a negative impact on the local environment. Although baseline mobilization will increase the storage requirements, storage practices will continue to meet or exceed the standards set forth by the EPA.

J. Land Management Program:

1. The Integrated Natural Resources Management Plan was completed in 1991 to address forest, agriculture, fish and wildlife management. A copy of this document is available in the office of Mr. Joe Haffner, ACO Staff, at Building No. 100-101. This plan will be revised in 1996 to meet the requirement for the five year revision.

a. Forest

Plans for the future harvests were curtailed in 1992 pending completion of a timber cruise and additional cultural resources investigations.

b. Agriculture

Detailed information addresses land use by discussing the Installation and facilities, including climate, soils, drainage, erosion control, land leasing and controlled burning.

- 2. Agricultural leases contain a crop rotation requirement where wind and water could cause severe soil erosion if the land were intensively cropped. The No-Till method is based on about 3,000 acres of cropland. All lessees must comply with a Tract Management Plan which is part of the agricultural lease and defines the farming practices that the lessee must follow. Land use and soil survey photographs of the area leased are included as part of the plan to aid the lessee in formulating and following good land management practices.
- 3. Thirteen Agricultural Tract Management Plans were revised in preparation for leasing in the of 1993. These tracts total 1,186 acres of crop land and 42 acres of pasture land. To date, 5,000 crop land acres have been terraced to control erosion and related soil depletion.

K. Fish and Wildlife:

- 1. Information is provided about plant, fish, and wildlife stocking programs and the degree of success, harvesting methods, and maps detailing areas allowing hunting and fishing. Predator control is done during the fall and early winter by means of the trapping program.
- 2. The objectives, and management activities are coordinated with the appropriate state Natural Resources Department, the U.S. Department of Interior, the Installation Land and Forest Management Programs, and are consistent with the assigned military mission. The Largemouth Bass and Channel Catfish species are well established in the 83 acre lake. Two small ponds which have been stocked during past years with largemouth bass, bluegill, and channel catfish have become well established.
- Fishing is permitted only on the 83 acre lake, the 7 acre lake, and the two ponds. All State and Federal regulations must be observed. Boats may be used on the 83 and 7 acre lakes. Both of the lakes are well populated with crappie, sunfish, largemouth bass, channel catfish and Walleye. The sport is enjoyed by many throughout the summer months.
- Hunting is permitted only in the area defined on a map prepared specifically for those applying for permission to hunt within the Installation. Hunters must check in and out of the Installation and must have a valid Iowa Hunting license and a special State permit issued with the approval of the Commanding Officer. Only shotguns and Bows and Arrows are permitted. All State and Federal hunting regulations must be observed. There is an abundance of rabbits, squirrels, turkeys, and deer in the area. During the deer season, deer are harvested within the Installation. The annual hunting season is one of the most important tools of the Wildlife Management Program.

- h. Blank ammunition from 75mm to 105mm.
- i. AP and AT type mines.
- j. Weapons dispensers (delivery system for bomblets or mines).
- k. Fuzes.
- 1. Manufacture of various inert components for the products listed above.
- m. DEMIL operations
- 2. Research and Development, to include testing of the various weapons produced.
- 3. The following Explosives and their derivatives are included in the manufacturing process:
 - Composition A-4
 - Composition A-5
 - Composition B
 - Composition H-6
 - HTA-3
 - LX-14
 - Octol
 - PAX2A
 - PBXN5
 - PBXN9
 - Propellant
 - TNT

- 2. Collecting of fruit, nuts, berries and mushrooms is restricted to employees, post residents and their houseguests. The same map denoting specified hunting areas, which is made available to sportsmen, is utilized for limiting the areas of fruit and berry picking. All parties must check in and out at Guard Headquarters and receive a special permit before entering the Installation.
- 3. Drulis Park, located west of the Administration Building, is available to all plant personnel for picnicking. Due to the potential fire hazard, picnicking is not allowed inside the Installation except at the Boy Scout Camp located at the north end of the 83 acre lake and there only with permission of the Commanding Officer. Properly supervised youth groups are allowed to camp at the Boy Scout Camp. Other camping privileges are not allowed. The Burlington Bird Club may conduct bird counts within the area upon approval of the Commanding Officer.
- 4. IAAAP land usage by the Iowa National Guard. The Iowa National Guard is in the process of preparing an Environmental Assessment for training exercises to be performed on the installation.
- L. Product Line or service.
 - 1. Current product categories.
 - a. Conventional Warheads ranging in size from 2.75" to 14.34" in diameter.
 - b. Artillery and tank rounds from 105mm to 155mm.
 - (1) Various configurations that primarily involve assemblage.
 - c. Precision Initiation Couplers from 1.47" to 1.95".
 - d. Combustible artillery casings.
 - e. Explosive Billets from 2.84" to 4.54".
 - f. Explosive pellets from .242" to 3.5".
 - q. Cratering Kits.

- 4. Probable near future projects or change in operation.
 - a. Facilities contract:

Mason and Hanger operation will not likely change significantly because of the facilities contract. The environmental issue will still be prevalent when manufacturing decisions are made. The only difference is that Mason and Hanger will shoulder more of the responsibility for the outcome. In all likelihood this will be an improvement environmentally speaking because of the community effect. Rather than operating as an Army representative in the community, Mason and Hanger will be representing themselves as a National, yet, local manufacturing company, with the same needs and responsibilities as all other manufacturers within the community.

- (1) An added benefit to the new contract will be an infusion of new employment opportunity brought about by the recruiting of manufacturing firms to fill vacant production facilities.
 - (a) The vacancies exist because of both the scaling down of the Defense Industry as well as Mason & Hanger's adoption of more efficient means of manufacturing such as: Zero Defects (Quality-In Quality-Out), Just-In-Time, Similar Product Line Sharing, and the Pull Method. Combined, they have resulted in:
 - (1) Less pollutants per item produced.
 - (2) Less need for disposal of Non-Conforming Material.
 - (3) Less waste of raw materials.
 - (4) A Company more capable of competing for National Defense Dollars for the local community.

- (2) Because of their responsibility to Federal, State, and Local authorities, Mason and Hanger will recruit firms who have a record of being environmentally sound. With an already established Environmental Department, Mason and Hanger will have the means to monitor all lessees to ensure they remain within the legal requirements (an advantage not prevalent in most industrial parks).
- (3) Construction will primarily be for existing building modification although some new construction may be necessary. Accepted methods will be utilized to prevent land erosion, and all changes and additions in plumbing and venting will conform to environmental regulation.
- b. Conventional Weapons Demilitarization (DEMIL):

M&H has been and will be performing DEMIL operations for the military. This technique requires the disassembly of explosive weapons and the recycling or disposal of their parts. Because it is necessary to alleviate outdated weapons, the primary decision rests with how and where to perform DEMIL with the least possible affect on the environment. M&H has the Explosive Waste Incinerator and the Contaminated Waste Processor necessary to carry out this procedure. Both units are monitored to ensure conformance with environmental standards. All materials capable of being recycled are recycled. All wastes are either destroyed by environmentally acceptable means or are shipped to EPA licensed facilities for proper treatment and disposal.

1. DEMIL items:

- Projectiles
- Cartridges
- Detonators

- Propellant
- Black Powder
- Initiating Explosives
- Pyrotechniques
- 2. No Atomic or Chemical weapons are planned to be DEMILed here.
- c. Cannon fire projectile testing:

This project is necessary in order to produce high quality munitions for the United States Defense Department.

Still in the planning stages at the time of this writing, the project will require extensive excavation in order to construct the projectile travel and monitoring channel. The cannon emplacement will be below the surface level of the ground, facilitating capabilities of absorption and deflection of the shock waves, therefore, keeping the noise level of the test firing within an acceptable range.

- (1) The projectiles or shrapnel will be captured using a method that will ensure no pieces go undiscovered.
- (2) Considerable effort will be made to construct the facility so as to protect the wild life in the area.
- (3) Ground disturbed during construction will be compacted and sodded where necessary in order to avoid soil erosion.
- (4) Construction and operation of this project would be expected to produce the same level of pollution no matter where it takes place. Therefore, the primary consideration would be the utilization of land already set aside for military purpose, which is the case at the IAAAP.

d. Land Excess to Middletown, Iowa:

An action is in progress to transfer ownership from IAAAP to the City of Middletown, Iowa 112.58 acres of land on buildings consisting of the installation housing area (with the exception of housing units 1 and 2 to be retained for the commanding officer and executive officer), recreation building and Drulis park. This action is being taken to dispose of the housing area as the cost of maintaining the housing area exceeds the income from the rental of the housing units.

IV. Alternatives considered:

Alternative No. 1 - The cease operations alternative involves moving to other sites all ammunition LAP operations and demilitarization activities. This alternative would produce positive impacts by significantly reducing air emissions, water usage and wastewater treatment. A serious negative impact involves approximately 1,100 personnel positions being eliminated and the resulting detrimental impact on the local economy. This alternative would also require the unnecessary expenditure of Department of Defense funds to move the LAP operations and demilitarization activities to other sites. The cease operations alternative is not considered to be applicable at this time as there is no basis to support this alternative.

Alternative No. 2 - The partial move alternative involves moving part of the ammunition LAP operations and/or demilitarization activities to other sites. This alternative would produce positive impacts by reducing air emissions, water usage and wastewater treatment. A negative impact involves eliminating personnel positions and the resulting detrimental impact on the local economy. This alternative would also require the unnecessary expenditure of Department of Defense funds to move the LAP operations and demilitarization activities to other sites. This alternative is also not considered to be applicable at this time as there is no basis to support this alternative.

Alternative No. 3 - The future operations alternative involves acquiring additional ammunition LAP operations and demilitarization activities, increasing the quantity of ammunition items produced under third party contracts to other firms and generating additional revenue by making unneeded facilities available to commercial users on subcontract arrangements. Negative impacts involve additional air emissions, water usage and wastewater treatment from additional activities and the Department of Defense expenditures to relocate operations and activities from other sites. Best available technologies would be implemented for pollution abatement. Positive impacts would involve additional employment and the resulting positive impact on the local economy. The completion of the action to direct the housing area/administration area either by selling it to the city of Middletown or excessing to some other Federal or State agency is considered to have no environmental impact on the The future operation alternative is of course somewhat speculative in nature and therefore is not applicable at this time.

Alternative No. 4 - The no action/no change in current mission alternative is based upon the following rationale: The IAAAP has installed facilities for pollution abatement which meet the best available technology. Since IAAAP is not scheduled for closure or realignment, the alternatives to cease operations or move part of the operations to another site remain, at this time, purely speculative and beyond the realm of viable alternatives. This position is directed by USAMC letter dated 12 November 1993 subject: Draft Installation Environmental Assessment (EA) for the Iowa Army Ammunition Plant. Therefore no change in current mission operations is anticipated and the no action alternative is applicable.

V. Affected environment (baseline conditions):

The installation covers 19,000+ acres within Des Moines County. Sections of four townships, Flint River, Danville, Union and Augusta, lie within the Plant boundary.

A. Soil Types

There are four types of surface soil in the Plant area. They are as follows:

1. Mahaska Group:

Mahaska is wind blown soil developed under prairie conditions. It is dark colored, medium textured, and moderately to slowly permeable. This soil is highly productive under good rotation, but artificial drainage is needed on level areas. It requires lime, maintenance of fertility, and control of sheet erosion on slopping areas.

2. Ladoga Group:

It is the transition between the Mahaska and Clinton Group having developed partly under timber vegetation and partly under prairie conditions. Ladoga soil needs lime, good rotation, and erosion control practices.

3. Clinton Group:

Clinton soil is wind blown and developed under timber vegetation. It is light colored, medium textured, and moderately to slowly permeable. This type of soil is subject to sheet erosion except on flatter areas, which need drainage. It requires lime, maintenance of organic content, and erosion control practices.

4. Wabash-Judson Group:

This type of soil is a bottom land soil on narrow drainage-ways, generally a black silty clay loam washed in from upland above, usually from prairie formed soils. It is often too wet to cultivate because it has intermittent drainage and is subjected to overflow. This group is generally in the creek beds since it has been washed into the Plant. The subsoils are clay with characteristics similar in permeability as the surface soils.

B. Natural Resources:

There are no known oil or mineral deposits within the IAAAP.

C. Climate

 The area has a mean temperature of 50.6°F. The highest temperature ever recorded was 111°F and the coldest was -27°F.

- 2. Average precipitation is 35.43 inches, well distributed throughout the year. The amount and distribution of rainfall provides ample water for abundant plant growth and numerous lakes and ponds.
- 3. The Installation is located within a moderate tornado frequency area, as determined by the U.S. Weather Service.
- 4. According to the Seismic Risk Map, the Burlington area is located in Zone 1, an area relatively free of earthquakes.

D. Biotic Community:

- 1. Types of Vegetation and Animals:
 - a. Three natural vegetative types occur in the IAAAP area; white oak, hickory and mixed hardwoods. All of these are contained in an upland hardwoods timber type. The woodland habitat occurs in the northeastern, east, south, and southwestern Plant boundary areas.
 - b. The installation has very little brush land area.

 Major species found are sumac, hawthorn, some ironwood, and wild berries of various kinds.
 - c. The grassland area, 2,133 acres, consists of species such as bluegrass, smooth brome, orchard and bird's foot trefoil grasses. Due to the outleasing of grazing land (1 May through 1 November), wildlife habitat in these areas is poor.
 - d. The plants, animals, insects and reptiles in the area are typical of southeastern Iowa. In part, due to the Installation's very successful conservation and wildlife program, there is an abundance of rabbits, squirrels, turkeys, raccoons, coyotes, bobwhite quails and deer in the area.

Threatened or Endangered Species:

At this time, the only endangered species known to reside at the IAAAP are the state endangered Yellow Trout Lily and the Orange Throated Darter. IOC is preparing a Threatened and Endangered Spieces Study for IAAAP. This study is expected to be completed within several weeks and will be provided as an enclosure to this document.

E. Archeological, Historical, and Recreational Sites:

- 1. As previously mentioned, seven cemeteries, two of them still in use, are located within the Installation. A pleasing appearance is maintained at all times.
- Two, one-room schoolhouses are also found within the area.
 Both schoolhouses, Hawkeye and Winnebago, are over 100 years old.
- 3. A Boy Scout camp is located within the area near the 83 acre Mathes Lake.
- 4. Drulis Park, located west of the Administration Building, is available to all Plant personnel for picnicking.

F. Air Quality.

The IAAAP is located in a rural setting and is in an air attainment region. Air quality standards are governed by the CAA administered through the IDNR.

G. Water.

The IAAAP is located on a variety of terrain with an average elevation of slightly greater than 600 feet above sea level. The terrain ranges from flat, high grade agricultural ground (60%) to hilly, rough pasture land (40%). The Installation is traversed by three small creeks: Long Creek on the west, Brush Creek in the middle and Spring Creek on the east. Long Creek and Brush Creek are within the Skunk River Watershed, and Spring Creek is within the Mississippi River Watershed. The Plant area is not subject to flooding.

- VI. Environmental consequences of the proposed action:
 - A. Conformity or Conflict With other Land-Use Plans, Politics and Controls:
 - 1. Federal, State and Local:
 - a. No known land-use plans, policies or controls are approved or proposed which would conflict with the Plant operation or proposed construction Projects.
 - b. Preservation of air quality is of the highest priority when setting standards for all fossil fuel purchases.
 - c. Waste explosives that cannot be recycled or sold to Army approved buyers and contaminated explosive wastes are disposed of by incineration in the Explosive Waste Incinerator and the Contaminated Waste Processor, respectively.
 - d. The Main Heating Plant is coal fired. A combination of an electrostatic precipitator, proportionally designed stack, and low sulfur high quality coal help to maintain compliance with the Clean Air Act. The other heating plants, building No. 1-62 Heating Plant, those located on Ammunition Load Line Nos. 1, 2, 3A, and the general shops (Building No. 500-144) use natural qas or No. 6 fuel oil.
 - Using the rate of production in CY1994, (e) the data on Table VIII (below) was prepared to determine pollutants released from the heating plant and heating units. During this period, the Installation was operating at approximately 30% of steam heating capacity. Tons of pollutants generated during 1994 are based on actual fuel consumption and computed according to AP 42 guidelines. The pollutant levels in Table VIII (below) are based upon the Criteria Pollutant Emissions from Boilers at the IAAAP in Table B-4 of the 1993 Air Emissions Inventory Report prepared by The Earth Technology Corporation. The pollutant levels in

Table IX (below) are based upon Table VIII (below), the capacity of the boilers in 3A-02 as a percentage (25%) of the Oil Fired Boilers in Table VIII of the 1977 Environmental Impact Statement for the IAAAP, and the Baseline Mobilization Factor from Table 4.8.5.2 of the IAAAP Mobilization Master Plan, Volume I, Main Report November 1989, prepared by the US Army Corps of Engineers.

Table VII

Pollutants (Tons/Yr.)

Based on the 1994 Steam Usage Level

Source	TSP	PM ₁₀	SO,	NO _x	СО	Voc
Main Heating Plant 500-139	7.13	6.42	419.6	108.8	39.7	.40
1-62 Heating Plant	.0005	.0005	.00002	.005	.0001	.001
Oil Fired Boilers * 500-144, 3A-02	0.00	0.00	0.00	0.00	0.00	0.00
Totals	7.46	6.45	428.71	110.38	39.84	.409

^{*} Did not operate during the 1994 calendar year.

Table VIII

Pollutants (Tons/Yr.)

Based on the Baseline Mobilization Steam Usage Level

Source	TSP	PM ₁₀	SO _x	NO _x	CO	VOC
Main Heating Plant 500-139	10.5	9.45	463.6	160.6	58.6	.6
1-62 Heating Plant	2.2	2.2	1.2	22.7	5.7	0.5
Oil Fired Boilers 1-02, 2-02, 3A-02, 500-144	3.47	3.16	104.05	23.2	1.35	0.3
Totals	16.17	14.81	568.85	206.50	65.65	1.40

- 2. All production process exhaust vents are listed in the IAAAP Facility Operations Air Emission Inventory and where required are under permit by Federal, State, and Local authorities.
- 3. All Construction Permits issued by the Iowa Department of Natural Resources (IDNR) to the IAAAP are on file in the M&H Environmental Department.
- 4. An Iowa Air Emergency Episode Plan (to be used in the event the State of Iowa declares that a hazardous air pollution condition exists) was submitted to, and approved by, the IDNR and is also on file in the M&H Environmental Department.
- 5. National Pollutant Discharge Elimination System (NPDES)
 Permit number 2900900 governs stormwater runoff and the
 following treatment of waste water effluents at the IAAAP.
 - 1. Industrial Waste Water (Explosive Contaminated Wastewater Treatment facilities and Coal Pile Runoff Water Treatment facilities.)
 - 2. Main Sewage Treatment Plant
 - 3A Sewage Treatment Plant

Mason & Hanger-Silas Mason Co., Inc. Iowa Army Ammunition Plant Environmental Assessment, 1995

- 6. Conflicts and/or Inconsistent Land-Use Plans:
 - a. Extent of reconciliation:

The vast majority of the Installation's outer boundary is agricultural land. In an effort to avoid eliminating the use of productive land by the local farming community, as much acreage as possible is made available for leasing by area farmers.

The acreage outleased for agricultural purposes includes 5,953 acres for cropland and 1,730 acres for pasture. Each tract has a management plan, usually for a term of 5 years. The IAAAP Agronomist in cooperation with the Soil Conservation Service (USDA), sets standards for conservation practices, fertilization requirements, wildlife plots, and erosion control practices for these tracts.

Test fire and demolition sites are as far removed as possible from populated areas, and test firing or demolition operations are restricted to the daylight (0700 to 1730) hours, and are curtailed when heavy, overcast weather conditions exist.

B. Air Quality Consequences.

Future Plant operation is not expected to be significantly different than past operations. Local air quality has not shown any cumulative effects from IAAAP operations. The IAAAP is located in an air attainment region.

- C. Water Quality Consequences.
 - 1. Plant operation as proposed.

Water sources receiving effluents from plant operations are monitored on a weekly basis and are well within the Iowa NPDES Permit requirements.

D. Consequences to Archeological, Historical, and Recreational Sites.

As noted earlier in the document, all known sites are maintained and disturbance from plant operations and construction are avoided. Any new construction in an area that has not already been surveyed for archeological or historical artifacts would be preceded by such a survey. If, at any time during construction, maintenance, or normal operations, a discovery is made of an article(s) that has meaningful probability of being an archeological or historical find; the proper authorities will be contacted and those procedures deemed necessary, appropriate, and agreed upon by the authorities contacted, the United States Government, and the United States Army will be followed.

No major sites are known to exist at this location and it is unlikely that there would be any destruction of archeological or historical artifacts that do exist on the IAAAP property. Maintenance of all known sites will remain as directed from the proper authorities. The archeological sites have been marked by the State of Iowa Historical Preservation Office on the following drawings: U.S. Geological Survey Drawing, West Burlington, Iowa Quadrangle, N4045-W9701.5/7.5 dated 1964 and U.S. Geological Survey Drawing, Danville, Iowa Quadrangle, N4045-W91155/7.5 dated 1981. Copies of these drawings are available at the installation.

E. Consequences to Wildlife.

Because the grounds in which the plant resides are limited access, allowing control of harvesting, it has produced a positive impact on the welfare of the wildlife as compared to the surrounding area. The count per square mile for most game animals is significantly higher within the plant boundaries than in the surrounding area. If the property were to be converted back to farm land as it was prior to the existence of the facility, it would likely produce a negative impact on those game animals.

Mason & Hanger-Silas Mason Co., Inc. Iowa Army Ammunition Plant Environmental Assessment, 1995

F. Consequences to the land.

As stated earlier in the document, plant policy follows all Federal, State, and local requirements in regard to maintaining the 19,000+ acres. Soil erosion is kept to a minimum by following proper procedure during construction and maintenance. Trees are harvested in the proper variety and numbers to allow better overall growth and survival of the wooded areas. A considerable amount of nonmanufacturing ground is devoted to agriculture.

There are areas of contamination from past operations consisting of production lines, the former Line 1 Impoundment Area and the Line 800 Lagoon. Remedial action to remove contaminated soils and treat contaminated water from the former Line 1 Impoundment and Line 800 Lagoon is to be initiated in 1995. Contaminated soil has been removed from Line 6 to allow return to normal background levels.

G. Consequences to local residence.

Employment roles are not likely to increase or decrease significantly in the foreseeable future. The payroll will likely remain at the same ratio to the surrounding area as it is currently.

Continued operation would not produce a significant change in the welfare of the local residence.

VII. Listing of Agencies and Persons consulted:

P. A. Richardson Mason & Hanger-Silas Mason Co., Inc. Iowa Army Ammunition Plant Middletown, Iowa

L. L. Nihart
Mason & Hanger-Silas Mason Co., Inc.
Iowa Army Ammunition Plant
Middletown, Iowa

T. R. Wahlig, PE Chief Environmental Compliance Division USAMC Rock Island, Illinois

Mason & Hanger-Silas Mason Co., Inc. Iowa Army Ammunition Plant Environmental Assessment, 1995

M. J. Beck Natural Resources Division AMCCOM Rock Island, Illinois

Beth Foster or Lowell Soike Iowa State Historic Preservation Office Des Moines, Iowa

Wayne Fischer Assistant Field Manager U.S. Fish and Wildlife Services Rock Island, Illinois

VIII. Finding:

The mitigated actions accomplished at this installation will not significantly affect the quality of the environment and are not environmentally controversial. It is not anticipated that the actions accomplished at the Installation will evoke litigation based on environmental issues. Existing and new facilities will be in compliance with all Federal, State and or local environmental regulations. Therefore, an Environmental Impact Statement is not required and a Finding of No Significant Impact will be prepared.

DEPARTMENT OF THE ARMY

(INDUSTRIAL OPERATIONS COMMAND) (IOC)

FINDING OF NO SIGNIFICANT IMPACT for the Installation Environmental Assessment

19 October 1995

Prepared By:

K. R. Miller Scientist M&H-SM Co., Inc. Reviewed By:

R. A. Herman Security Officer

COR Staff

R. O. Haines Safety Manager

COR Staff

R. E. Durbin

Environmental Engineer

M&H-SM Co., Inc.

L. D. Baxter Chief Engineer

COR Staff

Approved By:

Env., Safety & Health Div. Manager

M&H-SM Co., Inc.

FINDING OF NO SIGNIFICANT IMPACT

for the Installation Environmental Assessment

1. PURPOSE, NEED AND DESCRIPTION OF PROPOSED ACTION

Iowa Army Ammunition Plant (IAAAP) is a Government-Owned, military industrial installation under the jurisdiction of Headquarters, U.S. Industrial Operations Command (IOC) operated by Mason & Hanger-Silas Mason Co., Inc. under a facilities contract with the Army. The primary mission of this plant is to Load, Assemble, and Pack (LAP) ammunition items. The IAAAP produces a large variety of explosive loaded components and end items such as small boosters, mines, cratering charge, artillery rounds, missile warheads and cluster bombs. The IAAAP also has research and development capabilities and performs some depot mission work. The IAAAP performs demilitarization of ammunition items by disassembly (no open detonation).

Since Mason & Hanger operates the installation under a facility contract arrangement with the Army, areas not needed by Mason & Hanger may be made available to commercial users on subcontract basis. Support services including fire protection, safety, security, engineering, analytical and environmental are also available on a subcontract basis to commercial users on the installation. Analytical services are also being provided to off-site commercial accounts on a contract basis. The subcontract with commercial users will benefit surrounding communities by providing additional employment and the revenue from the subcontract will act to reduce overhead costs. Presently, several unused production lines are under consideration by commercial users for possible use under a subcontract arrangement. Mason & Hanger also uses the IAAAP facilities to produce ammunition items under third party contracts to other firms. Office space in Building No. 100-101 is leased to the Iowa Ordnance Plant Federal Credit Union.

A divestiture action is currently in process where the Army proposes to make available to the City of Middletown, Iowa 112.58 acres of land and buildings consisting of the installation housing area (with the exception of House Nos. 1 and 2), recreational building and Drulis Park.

FINDING OF NO SIGNIFICANT IMPACT FOR THE INSTALLATION ENVIRONMENTAL ASSESSMENT Page 2 of 5

2. ALTERNATIVES TO THE PROPOSED ACTION

The alternatives considered consisted of the cease operations alternative where all ammunition production demilitarization activities will be moved to other sites; the partial move alternative involves moving portions of the ammunition production and demilitarization activities to other and the future operations alternative proposes additional ammunition and demilitarization activities to be moved to the installation from other sites while increasing production under third party contracts. Since IAAAP is not scheduled for closure or realignment, the alternatives to cease operations or move part of the operations to another site remain, at this time purely speculative and beyond the realm of viable alternatives. The future operations alternative is also considered to be speculative and not a viable alternative at this time.

3. ENVIRONMENTAL IMPACT OF THE PROPOSED ACTION

A. AIR EMISSIONS

State of the art equipment has been installed to control air emissions within acceptable limits. The Explosive Waste Incinerator, Contaminated Waste Processor, coal fired Main Heating Plant, the natural gas and oil fired heating plants are operated in compliance with all Federal and State Air Regulations. Paint booths and primer tracer functioning units are installed and operated in compliance with construction permits obtained from the Iowa Department of Natural Very limited open burning is performed accordance with the Iowa Administrative Code and variances issued by the Iowa Department of Natural Resources. will be no significant impact on the air as a result of these activities.

B. LIQUID EFFLUENT

In accordance with Iowa NPDES Permit No. 2900900, effective 1 July 1995, facilities are operated for the treatment of sewage, explosive contaminated wastewater and coal pile runoff water. Discharges of treated water into the installation stream system from the facilities is performed in compliance with the parameter limits of the permit. The permit also requires monitoring of stormwater run-off from designated areas.

FINDING OF NO SIGNIFICANT IMPACT FOR THE INSTALLATION ENVIRONMENTAL ASSESSMENT Page 3 of 5

C. SOLID WASTE

Explosive contaminated paper, cardboard and wood is treated by fire in the Contaminated Waste Processor. Paper, cardboard and wood not contaminated by explosives will either be returned to vendors for reuse, sold as salvage, or be disposed of as nonhazardous waste in an off-site sanitary landfill. All housing area and cafeteria garbage is disposed off-site in a sanitary landfill.

D. HAZARDOUS WASTES

Scrap explosives that cannot be reused or sold to Army approved buyers will be treated in the explosive waste incinerator. Off-specification warheads will be considered for other applications or sale to Army approved buyers prior to being split for the purpose of reclaiming the explosives. Unsalvageable explosives from split warheads will be declared hazardous waste prior to treatment in the explosive waste incinerator. Waste solvents that cannot be recovered by onsite or off-site recovery equipment are shipped to EPA approved facilities for use as a supplemental fuel or treated by high temperature incineration. Solvents contaminated wipes are also shipped off-site for high temperature incineration as hazardous waste.

F. NOISE

The test fire of ammunition items is performed at the Test Fire Area in accordance with the Installation Compatible Use Zone (ICUZ) Plan. The ICUZ Plan was prepared to evaluate and control test fire activities for the purpose of limiting noise to levels that are compatible with land use on the installation and areas surrounding the installation.

H. SOIL

Minor disturbances of soil may result from construction activities and maintenance activities. Soil erosion is kept to a minimum by following proper procedures. There are areas of contamination from past operations consisting of production lines, the former Line 1 Impoundment Area and the Line 800 Lagoon. A remedial action project will act to remove contaminated soils and to treat contaminated water from the former Line 1 Impoundment and Line 800 Lagoon. Contaminated soil has been removed from Line 6 to allow return of the soil to normal background levels.

FINDING OF NO SIGNIFICANT IMPACT FOR THE INSTALLATION ENVIRONMENTAL ASSESSMENT Page 4 of 5

I. CULTURAL AND HISTORICAL

Compliance with the Natural Historic Preservation Act and all other Federal, State regulations will be maintained to protect cultural and historical resources. Archeological sites have been determined by the State of Iowa Historic Preservation Office. Modifications proposed to buildings with historical significance will be reviewed with and will require approval from the State of Iowa Historical Preservation Office prior to performing modifications.

J. LAND MANAGEMENT

The Integrated Land Management Plan addresses forest, agriculture fish and wildlife management to conserve and protect these resources. The only known installation threatened species (orange throated darter and yellow trout lily) are not located in areas affected by installation activities. Sufficient wildlife habitat exists on the installation to allow current operations without an adverse impact on wildlife.

4. LISTING OF AGENCIES OR PERSONS CONTACTED:

P. A. Richardson Mason & Hanger-Silas Mason Co., Inc. Iowa Army Ammunition Plant Middletown, Iowa 52638

L. L. Nihart
Mason & Hanger-Silas Mason Co., Inc.
Iowa Army Ammunition Plant
Middletown, Iowa 52638

T. R. Wahlig, PE Chief Environmental Compliance Division USAMC Rock Island, Illinois

M. J. Beck Natural Resources Division IOC Rock Island, Illinois

Beth Foster or Lowell Soike Iowa State Historic Preservation Office Des Moines, Iowa FINDING OF NO SIGNIFICANT IMPACT FOR THE INSTALLATION ENVIRONMENTAL ASSESSMENT Page 5 of 5

> Wayne Fischer Assistant Field Manager U.S. Fish and Wildlife Services Rock Island, Illinois

5. <u>POINT OF CONTACT FOR FURTHER INFORMATION OR RECEIPT OF PUBLIC COMMENTS</u>

Mr. L. D. Baxter, SIOIA-PPE Iowa Army Ammunition Plant Telephone Number: 319-753-7101 or 7130 Middletown, Iowa 52638

6. DEADLINE FOR FURTHER INFORMATION OR RECEIPT OF PUBLIC COMMENTS

30 November 1995

7. CONCLUSION

The mitigated actions accomplished at this installation will not significantly affect the quality of the environment and are not environmentally controversial. It is not anticipated that the actions accomplished at the Installation will evoke litigation based on environmental issues. Existing and new facilities will be in compliance with all Federal, State or local environmental regulations.

IOWA DEPARTMENT OF NATURAL RESOURCES National Pollutant Discharge Elimination System (NPDES) Permit

PERMITTEE

IDENTITY AND LOCATION OF PACILITY

US DEPT OF THE ARMY-IA ARMY AMMUNITION PLANT 17575 STATE HIGHMAY 79 MIDDLETONM, IA 52638 IONA ARMY AMMUNITION PLANT Section 1, T 69N, R 4W DES MOINES County, Iowa

IOMA MPDES PERKIT HENGER:

2900900

RECEIVING STREAM

SKUNK RIVER

DATE OF ISSUANCE:

07-01-1995

BOUTE OF FLOW

DATE OF EXPIRATION:

06-30-2000

LONG CREEK TO THE SKUNK RIVER.

TOU ARE REQUIRED TO FILE

POR REMOBIAL OF THIS PERMIT BY: 01-02-2000

RPA MINGSER: IA0022144

This permit is issued pursuant to the authority of section 402(b) of the Clean Water Act (33 U.S.C 1342(b)), Iowa Code section 4558.174, and rule 567--64.3, Iowa Administrative Code. You are authorized to operate the disposal system and to discharge the pollutants specified in this permit in accordance with the effluent limitations, monitoring requirements and other terms set forth in this permit.

You may appeal any conditions of this permit by filing a written notice of appeal and request for administrative hearing with the director of this department within 30 days of your receipt of this permit.

Any existing, unexpired Iowa operation permit or Iowa NPDES permit previously issued by the department for the facility identified above is revoked by the issuance of this Iowa NPDES operation permit.

FOR THE DEPARTMENT OF NATURAL RESOURCES

Director

. Wilson

Wayne Parrand, Supervisor

Wastewater Section

ENVIRONMENTAL PROTECTION DIVISION

Permit Number: 2900900

Outfall Number	Description
009	TREATED EFFLUENT FROM MAIN HEATING PLANT (BUILDING 500-139) CONSISTING OF COAL PILERUNOFF, BOILER BLOWDOWN AND FLY ASH LEA CHATE WHICH ALL DISCHARGE TO A POND
011	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS LINE 1.
012	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 1 AREA AT BUILDING # 1-70-1
013	MAIN SEWAGE TREATMENT PLANT OUTFALL AT BUILDING #500-216-1.
014	3A SEWAGE TREATMENT PLANT OUTFALL AT BUILDING #500-216-2.
021	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 2 AREA AT BUILDING #2-70-1
022	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 2 AREA AT BUILDING #2-70-2
032	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 3 AREA AT BUILDING #3-70-1
033	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE S AREA AT BUILDING #3-70-2
034	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 3A AREA AT BUILDING #3A-70-1
035	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN THE LINE 3A AREA AT BUILDING #3A-70-2
051	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN THE LINE SA AREA AT BUILDING # 5A-140-3
052	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN THE LINE 58 AREA AT BUILDING #58-140-3
082	DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 800 AREA AT BUILDING #800-70-1.
090	STORMWATER RUNOFF FROM EXPLOSIVES DISPOSAL AREA.
091	STORMWATER RUNOFF FROM OPERATIONS AREA.

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 009 TREATED EFFLUENT FROM MAIN HEATING PLANT (BUILDING 500-139) CONSISTING OF COAL PILERUNOFF, BOILER BLOWDOWN AND F

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

						EFFLUENT	IMITATIO	MITATIONS				
]			Concen	tration			Mese				
Wastewater Parameter	Season	Туре	7 Day Average	30 Day Average	Daily Maximum	Units	7 Day Average	30 Day	Daily Maximum	Units		
FOTAL SUSPENDED SOLIDS	YEARLY				50.0000			<u> </u>	 			
PH (MINIMUM ~ MAXIMUM)	VEARLY	FINAL	6.0000		9,0000	STD UNITS		-				
		<u> </u>	 		ļ <u>-</u>				-			
		ł 				! !				 		
		<u> </u>		[ļ <u> </u>	 			
· · · · · · · · · · · · · · · · · · ·					-							
					<u> </u>							
				<u> </u>	ļ			 		<u> </u>		
	 	 	 	 	 	 	 	<u> </u>	 			
							<u> </u>	1				
 		<u> </u>	<u> </u>	 	ļ			ļ	ļ			
		 	 	ļ	 	<u> </u>	ļ	 	-	 		
		+	<u> </u>	 	 	 	<u> </u>		 	 		
		 			 	 			 			
				1								

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 011 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS LINE 1.

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

	1			 		EFFLUENT	LIMITÄTIO	NS		
	į			Concen	ration			M.	995	
Wastewater Parameter	Sesson	Type	7 Day Average	30 Day	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units
FLOW	YEARLY	FINAL	<u> </u>		.0930	MGD		<u> </u>		
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL	<u></u>	20,0000	40.0000	MG/L		16,00	31.00	LBS/DAY
PH (MINIMUM - MAXIMUM)	YEARLY	FINAL	6.0000		9.0000	STD UNITS	ļ	ļ <u> </u>		
TRINITROTOLUENE	YEARLY	FINAL		.3300	1.0000	MG/L		. 26	,77	LBS/DAY
RDX + HMX	YEARLY	FINAL		.7500	2.2500	MG/L		.58	1.75	LBS/DAY
		ļ		 	 			<u> </u>	 	
		 	 	 		 		╂──	 	
		 	 		 	 	 	 	 	<u> </u>
		 				 		-		
		ļ	 	<u> </u>			 	 		
			 	<u> </u>		 		 	 	
		 	<u> </u>		ļ. .	1				
			 	<u> </u>				 		
		 	† <u>-</u>					†		
								 	-	
		<u> </u>						 		
		<u> </u>						 		
	·	1						†		
		1								
						<u> </u>				İ
		1					 	1	1	<u> </u>

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 012 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 1 AREA AT BUILDING # 1-70-1

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

	1	· · · ·				EFFLUENT	INITATIO	NS		
	ļ.			Concent	tration				158	
Wastewater Parameter	Season	Type	7 Day Average	30 Day Average	Dally	Units	7 Day Average	30 Day Average	Daily Maximum	Units
FLOW	VEARLY	FINAL			.0930	MGD			<u> </u>	
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL	<u> </u>	20.0000	40,0000	MG/L		16.00	31,00	LBS/DAY
PH (MUNIMAM - MUMINIM)	YEARLY	FINAL	6.0000		9.0000	STD UNITS	<u> </u>		<u></u>	
MERCURY, TOTAL (AS HG)	YEARLY	FINAL	ļ Ļ	.2130	.3180	UG/L	<u> </u>	.83	1,20	,001LBS/D
TRINITROTOLUENE	YEARLY	FINAL	<u> </u>	.3300	1.0000	MG/L		.26	.77	LBS/DAY
RDX + HMX	YEARLY	FINAL	<u></u>	.7500	2,2500	MG/L	<u> </u>	.58	1.75	LBS/DAY
ACUTE TOXICITY, CERIODAPHNIA	YEARLY	FINAL					ļ	<u> </u>	1.00	NON TOXIC
ACUTE TOXICITY, PIMEPHALES	YEARLY	FINAL		<u> </u>	ļ	<u> </u>	ļ	ļ	1.00	NON TOXIC
			 	<u> </u>			 	<u> </u>	ļ	
		<u> </u>	ļ		 	ļ		ļ		
					ļ	ļ <u>-</u>		<u> </u>		
			 				 			
								<u> </u>		<u> </u>
		ļ	<u> </u>	<u> </u>				 	<u> </u>	
		ļ					<u> </u>	<u> </u>	<u> </u>	
			<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ	ļ	
4				ļ	ļ			ļ	ļ	
		ļ		<u> </u>			ļ		<u> </u>	
		 	ļ							
						ļ	<u> </u>	ļ		
	,						<u>L</u>			

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 013 MAIN SEWAGE TREATMENT PLANT OUTFALL AT BUILDING #500-216-1.

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

						EFFLUENT LIMITATIONS									
	}			Concen	tration			M:	155						
Wastewater Parameter	Season	Type	7 Day Average	30 Day Average	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units					
FLOW	YEARLY	FINAL		.4900	1.0800	MGD									
CBOD5	VEARLY	INTER	40.0000	25.0000		MG/L		! 		LOS/DAY					
CBOD5	YEARLY	FINAL	40,0000	25.0000		MG/L	164.00	103,00		LBS/DAY					
<u>CB005</u>			85 PE	CENT REM	I OVAL REQUI	RED		<u> </u>							
TOTAL SUSPENDED SOLIDS	YEARLY	INTER	45,0000	30.0000		MG/L				LBS/DAY					
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL	45.0000	30.0000		MG/L	184.00	122.00		LBS/DAY					
TOTAL SUSPENDED SOLIDS		<u> </u>	85 PE	CENT REM	VAL REQU	RED	<u> </u>	<u> </u>		<u> </u>					
AMMONIA NITROGEN (N)	JAN	FINAL		6.7000	11.0000	MG/L		58.00	95.00	LBS/DAY					
AMMONIA NITROGEN (N)	FEB	FINAL		6.7000	11.0000	MG/L		58.00	95,00	LBS/DAY					
AMMONIA NITROGEN (N)	MAR	FINAL		3.0000	5.0000	MG/L		26.00	44,00	LBS/DAY					
AMMONIA NITROGEN (N)	APR	FINAL		3,0000	5,0000	MG/L		26.00	44.00	LBS/DAY					
AMMONIA NITROGEN (N)	MAY	FINAL		3.0000	5.0000	MG/L		26.00	44,00	LBS/DAY					
AMMONIA NITROGEN (N)	אטנ	FINAL		3,0000	5,0000	MG/L	<u> </u>	26,00	44.00	LBS/DAY					
AMMONIA NITROGEN (N)	JUL	FINAL	ļ	2.8000	4,6000	MG/L		24.00	40,00	LBS/DAY					
AMMONIA NITROGEN (N)	AUG	FINAL		2.8000	4.6000	MG/L		24.00	40.00	LBS/DAY					
I <u>ammonia nitrogen (n)</u>	SEP	FINAL		3,0000	5.0000	MG/L	<u> </u>	26,00	44.00	LBS/DAY					
AMMONIA_NITROGEN_(N)	ОСТ	FINAL		3.0000	5.0000	MG/L		26,00	44.00	LBS/DAY					
 AMMONIA_NITROGEN_(N)	NOV	FINAL		3.0000	5.0000	MG/L		 26.00	44.00	LBS/DAY					
 ammonia_nitrogen_(n)	DEC	FINAL		3.0000	5.0000	MG/L		26.00	44,00	LBS/DAY					
 PH (MINIMUM - MAXIMUM)	YEARLY	FINAL	. 6.0000	1 <u>1 </u>	 _9.0000	STD UNITS		<u> </u>	<u></u>	<u></u>					
MERCURY TOTAL (AS HG)	YEARLY	FINAL		. 2860	. 3990	UG/L		1,90	2,90	.00168/0					
SILVER, TOTAL (AS AG)	YEARLY			. 0090	T	l		66.00		.001LBS/D					

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 013 MAIN SEWAGE TREATMENT PLANT OUTFALL AT BUILDING #500-216-1.

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

		1	·	·		EFFLUENT	LIMITATIO	NS		
	!	[Concen	tration			M	188	
Wastewater Parameter	Season	Туре	7 Day Average	30 Day Average	Daily Maximum	Units	7 Day Average	30 Day	Daily Maximum	Units
ACUTE TOXICITY, CERIODAPHNIA	VEARLY	FINAL	 	<u> </u>				1.00		NON TOXIC
ACUTE TOXICITY, PIMEPHALES	YEARLY	FINAL						1,00		NON TOXIC
									<u> </u>	
				ļ				ļ		
									 	
		 			-	ļ	 			
				<u> </u>	-					

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 014 3A SEWAGE TREATMENT PLANT OUTFALL AT BUILDING #500-216-2.

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

			 	*		EFFLUENT I	IMITATIO	vs.		
	į			Cancen	tration		Mass			~~~
Wastewater Parameter	Season	Туре	7 Day Average	30 Day Average		Units	7 Day Average	30 Day Average	Daily Maximum	Units
FLOW	YEARLY	FINAL		.0400	,0700	MGD		•		
<u>CB005</u>	YEARLY	INTER	40.0000	25.0000	! 	MG/L	 			L8S/DAY
CB005	YEARLY	FINAL	40.0000	25.0000		MG/L	13,00	8,00		LBS/DAY
CBOD5		<u> </u>	85 PE	CENT REM	VAL REQU	RED		ļ	<u> </u>	
TOTAL SUSPENDED SOLIDS	YEARLY	INTER	45.0000	30.0000		MG/L				LBS/DAY
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL	45.0000	30.0000		MG/L	15.00	10.00		LBS/DAY
TOTAL SUSPENDED SOLIDS			85 PE	CENT REM	VAL REQU	RED		ļ 	<u> </u>	
PH (MINIMUM - MAXIMUM)	VEARLY	FINAL	6.0000		9.0000	STD UNITS		<u> </u>	<u> </u>	
SILVER, TOTAL (AS AG)	YEARLY	FINAL		.0360	.0550	MG/L	<u> </u> 	21,00	32.00	.001LBS/D
			<u> </u>	<u> </u>		<u> </u>			<u> </u>	
	<u> </u>	<u> </u>					<u> </u>			
				<u> </u>			<u> </u>	<u> </u>		
							Ĺ			
	1		T							
				1	Î					
				<u> </u>					1	
			†				<u> </u>		<u> </u>	
		1		<u> </u>	 		<u> </u>			
		1	†			<u> </u>	<u> </u>	_	 	
		1	 	 	 				 	
		J	1	<u> </u>	<u>. </u>	.L	1		<u> </u>	<u> </u>

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 021 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 2 AREA AT BUILDING #2-70-1

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

			I			EFFLUENT	LIMITATIONS				
	İ			Concen	ration		Mass				
Wastewater Parameter	Season	Туре	7 Day Average	30 Day Average	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units	
FLOW	YEARLY	FINAL			.0930	MGD	ļ	-			
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL		20.0000	40.0000	MG/L	<u> </u>	16.00	31,00	LBS/DAY	
PH (MINIMUM - MAXIMUM)	VEARLY	FINAL	6,0000	<u> </u>	9.0000	STD UNITS	.				
MERCURY, TOTAL (AS HG)	YEARLY	FINAL	 	.2130	,3180	UG/L	ļ	.83	1.20	.001L85/D	
TRINITROTOLUENE	YEARLY	FINAL	ļ	.3300	1.0000	MG/L	<u> </u>	.26	.77	LBS/DAY	
RDX + HMX	YEARLY	FINAL		.7500	2.2500	MG/L	ļ	.58	1.75	LBS/DAY	
						<u> </u>	<u> </u>	<u> </u>	!		
				<u> </u>							
** · · · · · · · · · · · · · · · · · ·							1				
		 	<u> </u>			<u> </u>	<u> </u>				
1			<u> </u>	 	 		<u> </u>		 		
		 	 	 	1	 	 	 	<u> </u>		
		├	 	 	1			 		<u> </u>	
<u> </u>		├	<u> </u>	 	ļ		 	- 			
		<u> </u>	 	 	 	 	 	 	 		
			 	.	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	İ	
<u> </u>					<u> </u>			<u> </u>	ļ	<u> </u>	
i I			1					1	l l		

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 022 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 2 AREA AT BUILDING #2-70-2

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

			I			EFFLUENT L	LIMITATIONS					
	į			Concen	ration			Me	18.6			
Wastewater Parameter	Season	Type	7 Day Average	30 Day Average	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Unita		
FLOW	VEARLY	FINAL			.0930	MGD						
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL		20,0000	40.0000	MG/L	! 	16.00	31,00	LBS/DAY		
PH (MINIMUM - MAXIMUM)	VEARLY	FINAL	6.0000		9.0000	STD UNITS		.				
MERCURY, TOTAL (AS HG)	VEARLY	FINAL		.2130	.3180	UG/L	<u> </u>	.83	1.20	.001LBS/D		
TRINITROTOLUENE	YEARLY	FINAL		.3300	1.0000	MG/L	ļ	. 26	.77	LBS/DAY		
RDX + HMX	YEARLY	FINAL		.7500	2.2500	MG/L		,58	1.75	LBS/DAY		
						! 		<u> </u>				
		<u></u>										
									İ			
		<u> </u>						ļ				
						<u> </u>						
]					
						1						
								1	1			
				<u> </u>				1				
		1		1	<u> </u>							
			†	1	<u> </u>							
				 	 	†	 	†	<u> </u>			
		1	 	 		 	 		!			
				<u> </u>	1	<u> </u>	1	-		<u> </u>		

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 032 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 3 AREA AT BUILDING #3-70-1

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

			<u> </u>			EFFLUENT !	LIMITATIO	NS		
	İ			Concen	ration		Mass			
Wastewater Parameter	Season	Type	7 Day Average	30 Day Average	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units
FLOW	YEARLY	FINAL			.0930	MGD				
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL		20.0000	40.0000	MG/L		16.00	31,00	LBS/DAY
PH (MINIMUM - MAXIMUM)	YEARLY	FINAL	6.0000		9.0000	STD UNITS				
MERCURY, TOTAL (AS HG)	YEARLY	FINAL	<u> </u>	.2130	.3180	UG/L		.83	1.20	.001LBS/D
TRINITROTOLUENE	YEARLY	FINAL		. 3300	1.0000	MG/L		, 26	.77	LBS/DAY
RDX + HMX	YEARLY	FINAL	<u> </u>	.7500	2.2500	MG/L		.58	1.75	LBS/DAY
		<u> </u>								
					ļ					
							<u></u>	<u> </u>		
							l			
							-			
							1			
										_
·		<u> </u>	<u> </u>		<u> </u>		<u> </u>			
			 	 	 			1	 	
		 	 				 	 		
		 	 	 		 	 	 	 	
		}	 	 	 	-	ļ		 	
l <u></u>			<u> </u>	1	<u> </u>	1	<u> </u>	1	<u> </u>	Ĺ

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 033 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 3 AREA AT BUILDING #3-70-2

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

			l ————			EFFLUENT	INITATIO	NS		 -
				Concen	ration			M	188	
Wastewater Parameter	Season	Type	7 Day Average	30 Day Average	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units
FLOW	YEARLY	FINAL	<u> </u>		.0930	MGD		·		
TOTAL SUSPENDED SOLIDS	VEARLY	FINAL		20.0000	40.0000	MG/L		16.00	31.00	LBS/DAY
PH (MINIMUM - MAXIMUM)	YEARLY	FINAL	6.0000		9.0000	STD UNITS		ļ		
MERCURY, TOTAL (AS HG)	YEARLY	FINAL		. 2130	.3180	UG/L	! !	.83	1.20	.001LB\$/D
TRINITROTOLUENE	YEARLY	FINAL		.3300	1.0000	MG/L		.26	.77	LBS/DAY
RDX + HMX	YEARLY	FINAL		.7500	2.2500	MG/L		.58	1.75	LBS/DAY
								<u> </u>	ļ	
			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 .
				<u> </u>	 		<u> </u>	<u> </u>	<u> </u>	
		 				ļ			<u> </u>	
		 			 			<u> </u>	<u> </u>	
		i		ļ <u>.</u>	ļ <u> </u>	 	 	<u> </u>		
		ļ <u>.</u>		<u> </u>		<u> </u>		<u> </u>		
						<u> </u>		<u> </u>	}	
		<u> </u>	ļ	 	ļ	ļ	ļ	<u> </u>	 	
		└	<u> </u>		ļ	<u> </u>		ļ	ļ	
		<u> </u>		<u> </u>		<u> </u>				<u> </u>
		<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>		! !
<u> </u>								<u> </u>		<u> </u>
l 		1					<u> </u>	<u> </u>	<u> </u>	
		[}					

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 034 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 3A AREA AT BUILDING #3A-70-1

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

					EFFLUENT	LIMITATIO				
į į			Concen	tration		Mass				
Season	Type	7 Day Ayerage	30 Day Average	Daily Maximum	Units	7 Day	30 Day	Daily Maximum	Units	
YEARLY	FINAL	<u> </u>		.0930	MGD	ļ				
YEARLY	FINAL	ļ	20.0000	40.0000	MG/L	<u> </u>	16,00	31.00	LBS/DAY	
YEARLY	FINAL	6.0000		9.0000	STD UNITS		ļ			
YEARLY	FINAL	ļ	.3300	1,0000	MG/L	ļ	.26	,77	LBS/DAY	
YEARLY	FINAL		.7500	2.2500	MG/L		.58	1.75	LBS/DAY	
					<u> </u>					
	ļ 		<u> </u>	ļ		<u></u>				
	.	 				_	<u> </u>			
	ļ				 	ļ	 			
		<u> </u>	ļ <u>.</u>	ļ	<u> </u>	 	 			
	 	ļ		 		 	 			
		ļ	 	 	 		-	 		
<u> </u>	<u> </u>		 		 	 	 	 		
	 	 	 	<u> </u>		 - -				
	 			<u> </u>		 	 			
	 	!	 	 	 	-	 			
	 		 	 		 				
	 	 	<u> </u>		 	 				
	YEARLY YEARLY YEARLY YEARLY	YEARLY FINAL YEARLY FINAL YEARLY FINAL	YEARLY FINAL YEARLY FINAL	YEARLY FINAL 20.0000 YEARLY FINAL 5.0000 YEARLY FINAL ,3300	Season Type Average Maximum	Concentration	Concentration	Tope Tope Tope Average Maximum Units Average Average Average Maximum Units Average	Concentration Mass	

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 035 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN THE LINE 3A AREA AT BUILDING #3A-70-2

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following affluent limitations:

1		г	T			EFFLUENT	INITATIO	NS		
	İ	!		Concen	tration	,		M	166	
<u>Wastewater Parameter</u>	Season	Туре	7 Day Averege	30 Day	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units
FLOW	YEARLY	FINAL	<u> </u>	[.0930	MGD		<u> </u>		
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL		20.0000	40.0000	MG/L		16.00	31.00	LBS/DAY
PH (MINIMUM - MAXIMUM)	YEARLY	FINAL	6.0000		9,0000	STD UNITS				ļ <u>.</u>
TRINITROTOLUENE	YEARLY	FINAL	<u> </u>	.3300	1.0000	MG/L		,26	.77	LBS/DAY
RDX + HMX	YEARLY	FINAL	<u> </u>	.7500	2.2500	MG/L		.58	1.75	LBS/DAY
			 	<u> </u>	 	<u> </u>		 		
			<u> </u>	 	ļ ———			 		
			 			 	-			
				<u> </u>	 	†	 			
		ļ								
		<u> </u>		<u> </u>				 		
		<u> </u>		ļ				ļ	<u> </u>	
		<u> </u>		ļ	 	<u> </u>	<u> </u>	 	 	<u> </u>
	· · · · · · · · · · · · · · · · · · ·	 	 	 	<u> </u>	 	 	- 	 	
		 	<u> </u>		<u> </u>	 		<u> </u>	<u> </u>	
·	<u></u>	 	 	 	<u> </u>	 	<u> </u>	 	 	ļ
		+	 	 	 	 		 	 	-
		 	 	-	 	 	 	 	 	
		-	 	 	 		 	 	 	
·				J.,	<u> </u>	<u> </u>	<u> </u>			<u> </u>

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 051 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN THE LINE 5A AREA AT BUILDING # 5A-140-3

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

			EFFLUENT LIMITATIONS Concentration Mass										
	į			Concen	tration			Ma	188				
Wastewater Parameter	Season	Type	7 Day Average	30 Day Average	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units			
FLOW	YEARLY	FINAL			.0930	MGD		<u> </u>					
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL		20.0000	40,0000	MG/L		16.00	31.00	LBS/DAY			
PH (MINIMUM - MAXIMUM)	VEARLY	FINAL	6.0000		9.0000	STD UNITS	 						
TRINITROTOLUENE	VEARLY	FINAL		3300	1,0000	MG/L		, 26	.77	LBS/DAY			
RDX + HMX	YEARLY	FINAL	ļ	7500	2,2500	MG/L		,58	1,75	LBS/DAY			
	 -	ļ	 	<u> </u>		<u> </u>		 -	<u> </u>				
					-	-		-					
				 	_		<u> </u>	<u> </u>					
		<u> </u>			<u> </u>		<u> </u>						
		ļ											
				ļ <u></u>	ļ		ļ	ļ					
		ļ		<u> </u>	ļ		<u> </u>	ļ	ļ	ļ			
		ļ					ļ	ļ <u>-</u>					
		ļ		ļ			 	<u> </u>		 			
		ļ				<u> </u>	ļ	 					
		ļ			<u> </u>	<u> </u>	ļ	 -					
			<u> </u>	<u> </u>	<u> </u>		<u> </u>		ļ	Í			
			<u>i</u>	<u>i</u>			<u> </u>	<u>i</u>	<u> </u>	<u> </u>			

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 052 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN THE LINE 58 AREA AT BUILDING #58-140-3

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

			EFFLUENT LIMITATIONS										
	j			Concen	ration			M	188				
Wastewater Parameter	Season	Type	7 Day Average	30 Day	Daily Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units			
FLOW	YEARLY	FINAL			.0930	MGD		·					
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL		20,0000	40,0000	MG/L		16,00	31.00	LBS/DAY			
PH (MINIMUM - MAXIMUM)	VEARLY	FINAL	6,0000		9.0000	STD UNITS							
TRINITROTOLUENE	YEARLY	FINAL		.3300	1.0000	MG/L		.26	.77	LBS/DAY			
RDX + HMX	YEARLY	FINAL	 	.7500	2,2500	MG/L	! }	.58	1.75	LBS/DAY			
		 -			<u> </u>								
									·	· 			
	<u> </u>	<u> </u>		<u> </u>	<u> </u>		ļ	<u> </u>					
				<u> </u>			 	<u> </u>					
			 	-	ļ	<u> </u>	<u> </u>	 					
		 		 	 	<u> </u>		ļ		 			
						<u> </u>	 	ļ					
		-	 	ļ	 								
				<u> </u>				<u> </u>					
		ļ	1	1									
					<u></u>								

Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 082 DISCHARGE FROM EXPLOSIVE LOADING OPERATIONS IN LINE 800 AREA AT BUILDING #800-70-1.

Interim Limits Start: 07-01-1995 Interim Limits End: 10-30-1996

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

		· · · ·	EFFLUENT LIMITATIONS									
	•		Concentration					Ma	8.6			
Wastewater Parameter	Season	Type	7 Day Average	30 Day Average	Dally Maximum	Units	7 Day Average	30 Day Average	Daily Maximum	Units		
FLOW	YEARLY	FINAL			.0930	MGD		-				
TOTAL SUSPENDED SOLIDS	YEARLY	FINAL		20.0000	40.0000	MG/L		16.00	31.00	LBS/DAY		
PH (MINIMUM - MAXIMUM)	YEARLY	FINAL	6,0000	<u> </u>	9,0000	STD UNITS		<u> </u>				
TRINITROTOLUENE	YEARLY	FINAL		.3300	1.0000	MG/L		.26	.77	LBS/DAY		
RDX + HMX	YEARLY	FINAL		.7500	2,2500	MG/L		.58	1.75	LBS/DAY		
		ļ ———	<u> </u>	<u> </u>	<u> </u>	 	 					
							 			<u> </u>		
		l										
						l L			<u></u>			
			<u> </u>		<u> </u>	<u> </u>	<u> </u>					
		ļ <u></u>					<u> </u>					
			ļ				<u> </u>					
						<u> </u>	<u> </u>					
ļ					<u> </u>							
			<u> </u>									
		ļ	ļ	<u> </u>						<u> </u>		
		ļ		<u> </u>	<u> </u>		<u> </u>					
				<u> </u>				1				

Non-Standard Effluent Limitations

Permit Number: 2900900

OUTFALL NO.: 009 TREATED EFFLUENT FROM MAIN HEATING PLANT (BUILDING 500-139) CONSISTING OF COAL PILERUNOFF, BOILER BLOWDOWN AND F

Wastewater Parameter

Non-Standard Limits

TOTAL SUSPENDED SOLIDS

THE EFFLUENT LIMITATIONS FOR TOTAL SUSPENDED SOLIDS SHALL NOT APPLY WHEN DISCHARGE OCCURS AS A RESULT OF A RAINFALL EVENT EXCEEDING THE 10 YEAR 24-HOUR RAINFALL EVENT. THE 24-HOUR RAINFALL EVENT IS EQUIVALENT TO 4.5 INCHES OF RAINFALL WITHIN A 24-HOUR TIME PERIOD

44.2

IOWA OPERATING PERMIT APPLICATION - PART 1 FORM 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

N				**					
i) impany/Facility Name lowa Army Ammunit	ion Plant	ſ	2) EKQ	No. 92-3457	,	3) Form	n 4.0 Page1	of	1
4) Emissions Point No.	5) Emissions Poi	ot Descript	inn C		6)	<u> </u>			
BG-199-1/EPI	~			EWI	EMIS	SION	YEAR:	199:	3
		SION UNIT		IAL OPERATIONS A					
7) EMISSION UNIT NO.	8) SCC NO.		9) D	ESCRIPTION O	F PROCESS				
B6-199-1/EUI	<u> </u>			ingle Chamber	Rotary Kil	n		· 	
10) Raw Material	 .			L THROUGHPUT - Ictual Throughput -	V		43) 11-		<u> </u>
Contaminated Wast	e(waste expassive			16,000)		12j Gn	its Raw M lbs	atenai
				rating Rate/Schedu					
	JANMA	<u> </u>		APRILJUNE	JULY-SE	EPT.		OCTDEC	<u> 2</u>
13) Percent of Total Operating Time	25	- %		25 %	25	- %		25	%
14) Hours/Day	10	Hours		/U Hours	10	Hour	rs /	10	Hours
15) Days/Week	2	Days		Z Days	2.	Days		2	Days
16) Weeks/13 Week Quarter	7.3	Weeks		13 Weeks	/3	Weel		12	Weeks
	ATED EQUIPMEN	T (CE and I	ME doc	cuments should be	filed for each pie	ce of Eq	ulpment)	·	
,17, Control Equipment (CE) No.	B6-199-1	ICEL		86-199-1	ICEZ	56	-199-11	CE 3	,
(18) Monitoring Equip. (ME) No.									
			ACTU	AL EMISSIONS					
		(21)		(22)			(24)		(5)
(19) Air Pollutant	(20) Emission Factor	Emission / Units	Factor	* Source of Emission Factor	(23) Ash or Sulfur %		ined Control Iciency %	1	Emissions is/Yr)
PM-10									
TSP	0.0035	g/scf		Stack Test			99	0.002	22
SOx									
NOx								}	
voc								<u> </u>	
co	28.16	ppm		Stack Test		ļ	99	8.8x1	0-3
Lead	1.0	mg/L		Ash Test			99	3.122	c10 ⁻⁸
a) CAS No. Chromium	2.10x10 ⁻⁶	g/sec		Stack Test			99	6.49x	10-7
t S No. Cadmium	0.2	mg/L		Ash Test			99	6.24x	10 ⁻⁹
c) CAS No. Sources of Emission Factors: CEM	Stack Test Mass	Balance AP	42 FPA	Sire SPA.YATES S	PALLE Workshee	Other -	specify		
	1 "	3214MC 8 PAT-		44 lis " ELVINNISL " &	LUCTE " Link strains	· ** Anniel - *	-44-1		

WA OPERATING PERMIT APPLICATION-PART 1 orm CA-01 CALCULATIONS

Duplicate this form for each form it will accompany in the application.

* Facility Name v= Army Ammunition Pla	ant	2) EIQ No. 92-3457
) Emission Point No. BG-199-1/EP)	4) Emission Unit No. BC - 199-1/EU/	5) Emission Unit Description or (SCC) No.

3) Calculations are provided in support of information reported on Form___3,page__/

7) Emissions Calculations

Use in this form (or other paper with substantially the same information listed in questions 1-6 above) to document nformation provided on Part 1, forms 1.3 through 5.0. Include a description of any assumptions used in making the alculations. Include the calculations with the form it applies to in the application.

20 Emissions

Concentration of CO in stack sample - 28.16 ppm Actual Volumetric Flow - 1870 ft² / min

Convert ppm to ug/m²

 $28.16 \text{ ppm x } 28.01 / 24.5 \text{ x } 1 \text{ x } 10^{\circ} = 32.194.4 \text{ ug/m}^{\circ}$

32,194.4 $ug/m^2 \times 1 g / 1 \times 10^6 ug \times 1 lb / 453.59 g \times 0.02832 m^2 / ft^2 \times 1870 ft^2 / min = 0.0038 lb / min 16,000 lb burned / yr x hr / 205 lbs x 0.0038 lb / min x 60 min / hr x ton / 2000 lb = 8.89 x 10^2 ton / yr$

-6B

ic _ration of particulate in sample - 0.0035 gr / dscf

.ast Feed Rate - 205.42 lb / hr

Actual Volumetric Flow - 1870 ft² / min

0.0035 gr / dscf x 6.49 x 10⁴ kg / g x lb / 0.453 kg x 1870 cf / min x 60 min / hr x 16000 lb / yr x hr / 205 lb

x ton / 2000 lb = 2.19 x 10³ ton / yr

CHROMIUM

Fest Waste Feed Rate - 205.42 lb / hr

Chromium Emission Rate in Stack - 2.10 x 10⁴ g / sec

Actual Was

 2.10×10^4 g / sec x 1 lb / 453.59 g x 60 sec / min x 60 min / hr = 1.667×10^4 lb / hr (test)

1.667 x 10° lb / hr x 205 lb/hr (actual) / 205.42 lb/hr (test x 16000 lb / yr x hr / 205 lb x ton / 2000 lb

 $= 6.49 \times 10^{-7} \text{ ton } / \text{ yr}$

ASH TEST DATA - ND = NOT DETECTED

Arsenic	ND	mg/L
Barium	ND	mg/L
Cadmium	0.2	mg/L
Chromium	ND	mg/L
Mercury	ND	mg/L
Lead	1.0	mg/L
Selenium	ND	ma/L

WA OPERATING PERMIT APPLICATION-PART 1 rm CA-01 CALCULATIONS

Duplicate this form for each form it will accompany in the application.

* Facility Name win Army Ammunition Plant		2) EIQ No. 92-3457
Emission Point No.	4) Emission Unit No. 8.6-199-1 / EU/	5) Emission Unit Description or (SCC) No.

i) Calculations are provided in support of information reported on Form 3, page 1

') Emissions Calculations

Use in this form (or other paper with substantially the same information listed in questions 1-6 above) to document information provided on Part 1, forms 1.3 through 5.0. Include a description of any assumptions used in making the alculations. Include the calculations with the form it applies to in the application.

I volume of ash removed from the EWI was not available. The amount was reportedly negligible, consisting primarily of residue on the inside walls of the unit. The volume of ash generated from the unit was assumed to be one cubic pot.

ADMIUM

).2 mg/L x 28.32 L/ft² x 1 ft³ / yr x g / 1000 mg x lb / 453.59 g x ton / 2000 lb = 6.24×10^{9} ton / yr

.EAD

i.0 mg / L x 28.32 L / ft² x 1 ft² / yr x g / 1000 mg x lb / 453.59 g x ton / 2000 lb = 3.12×10^{-9} ton / yr

IOWA OPERATING PERMIT APPLICATION - PART 1

Form 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

1 mpany/Facility Name	mpany/Facility Name						(3) Form 4.0					
	on Plant	- 1	t) EIQ		23457			Page 1	of	4		
4) Emissions Point No.	on Plant 5) Emissions Po	nt Descripti	on <	+0CK	2-343 7	(6)						
BG-199-1/EPI	EWI					EMIC	SION	YEAR:	199.	3		
		TINU NOIS				UND EMISSIONS						
7) EMISSION UNIT NO.	8) SCC NO.		ſ ·			F PROCESS			-			
BG-199-1/EUI	<u> </u>					- Rotary Ki	<u>ln</u>	n				
10) Raw Material				L THROU		Yearly Total	12) Units Raw Materia					
			1.,,					12) 011	ILS ROW IN	I STEEL INS		
No. 2 Fuel Oil					750				gal			
				rating Rat								
ļ	JANMA	R		APRIL-JU	NE	JULY-SE	PT.		OCTDE	C.		
13) Percent of Total Operating Time	25	%		25	%	25	*		25	*		
40.46		- [-						
14) Hours/Day	10	Hours		10	Hours	10	Hour	• •	10	Hours		
15) Days/Week				_				i	_			
,,	2	Days			Days	<u> </u>	Days		<u> </u>	Days		
16) Weeks/13 Week Quarter	13	Weeks		13	Weeks	13	Week	. /	2	Weeks		
ASSOCIATED EQUIPMENT (CE and ME documents should be filed for each place of Equipment)												
(17) Control Equipment (CE) No.	BG-199-11	CEI		B6-19	79-1/	CEZ	Be	-199-1	ICE.	3		
(18) Monitoring Equip. (ME) No.							T		 			
		A	CTU	AL EMIS	SIONS							
(19) Air Pollutant	(20) Emission Pactor	(21) Emission F Units	actor	* Source a	2) (Emission de/	(23) Ash or Suther %		(24) ned Control siency %	ACTUAL	Emizzions ts/YI)		
PM-10	1.08	1b/1000	gal	AP-42	2			0	.00	0405		
TSP	2	15/1000	ga1	AP-42	!		<u> </u>	0	7.5x1	0 ⁻⁴		
SOx	142 5	1ь/1000	ġa1	AP-42	!	0.047		0	2.5x1	0-3		
NOx	20	1ь/1000	ga1	AP-42				0	0.007	5		
voc	0.34	1ъ/1000	gal	AP-42				0	1.3x1	0-4		
СО	5	1Ь/1000	gal	AP-42	·			0	1.9x1	0 ⁻³		
Lead	8.9	1ь/10 ¹²	вти	AP-42				0	4.6x1	0-7		
a) CAS No.	4.2	1ь/10 ¹²	BTU	AP-42				0	2.2x1	0 ⁻⁷		
L. AS No. Beryllium	2.5	1b/10 ¹²	вти	AP-42			(0	1.3×10			
c) CAS No. Cadmium	11	1b/10 ¹² 1	3TU	AP-42	<u> </u>		Other	0	5.7x10	-7		

IOWA OPERATING PERMIT APPLICATION - PART 1

Form 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

mpany/Facility Name	acility Name				2) EIQ No.					3) Form 4.0			
Iowa Army Ammuniti	on Plant	ĺ		q	2_3457		ľ		Page2	ď	4		
4) Emissions Point No.	on Plant 5) Emissions Po	nt Descripti	on S	tack	FOC	6)				160			
BG-199-1/EPI	EWI			•	, 0,		EMIS	SION	YEAR:	1793	3		
		TIMU NOIS											
7) EMISSION UNIT NO.	8) SCC NO.		9) D	ESCRIP	TION O	F PRO	CESS						
B6-199-1/EUI	<u> </u>					- Rot	ary Kil	n					
463 0				L THROU		W	7-1-1		455 10	4-0-11			
10)- Raw Material			11) A	ctual Thro	rugnput -	Tearry	I OTAL	}	12) Un	its Raw Ma	aderias		
No. 2 Fuel Oil					750					gal			
				rating Rat		ile							
<u> </u>	JANMA	R.		APRILJUI	1E	<u> </u>	JULY-SE	PT.		OCTDEC	<u>. </u>		
13) Percent of Total Operating Time	25	%		25 %			25	*		25	%		
14) Hours/Day	10	Hours		10	Hours	!	10	Hour	s	10	Hours		
						1							
15) Days/Week	2	Days		Z	Days	<u>:</u>	2	Days		2	Days		
16) Weeks/13 Week Quarter	/3	Weeks		13	Weeks	!	13	Week	s	13	Weeks		
	ATED EQUIPMEN	T (CE and I	NE doc	uments s	hould be	filed for	each piec	of Equ	sipment)				
(17) Control Equipment (CE) No.	BG-199-1	ICF1		56-1	199-1	ICE	z	16	-199-1	CES) 		
(18) Monitoring Equip. (ME) No.													
			CTU	AL EMIS	SIONS								
(19) Air Pollutant	(29) Emission Factor	(21) Emission F Units	actor		2) f Emission stor		(23) r Suiffur %	4 -	(24) ned Control ciency %	ACTUAL I	Linkspons		
PM-10													
TSP													
SOx			-										
NOx													
voc													
СО													
Lead													
a) CAS No. C'romium	57.5	1ь/10 ¹²	BTU	AP-42					0	3×10 ⁻⁷			
AS No. Formaldehyde	319	1ь/10 ¹² 1	вти	AP-42					0	1.7x10	-5		
c) CAS No. Manganese	14	12 1b/10 ј	вти	AP-42					0	7.3×10	-7		

Form 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

1 mpany/Facility Name		12	EIQ No.			3) Form 4.0					
Iowa Army Ammunit:	ion Plant			92_3/57		a) rom	Page 3	ol	4		
4) Emissions Point No.	5) Emissions Po	int Descriptio	n <l< th=""><th>92-3457 6CK FO</th><th><u>(6)</u></th><th></th><th></th><th>100</th><th></th></l<>	92-3457 6CK FO	<u>(6)</u>			100			
BG-199-1 (EPI	EWI				EWIS	SION	YEAR:	199	3		
					AND EMISSIONS						
7) EMISSION UNIT NO.	8) SCC NO.		Ĭ		F PROCESS						
BG-199-1/EUI	<u>.L</u> .				- Rotary Kil	L <u>n</u>	 _	·			
10) Raw Material				ROUGHPUT	Vand. Fran	 -		- 01-			
(U) Raw Mausian			II) ACCES	Throughput -	Tearry Local		12) Uni	ts Raw M	auriai		
No. 2 Fuel Oil				750				gal			
Actual Operating Rate/Schedule											
	JANMA	R.	APRI	LJUNE	JULY-SE	PT.		OCTDE	c		
13) Percent of Total Operating Time	25	*	2	~ %	25	%		25	%		
	1				-						
14) Hours/Day	10	Hours	10	Hours	10	Hour	B	10	Hours		
15) Days/Week	2	_	2	, _	. ,	_		7	_		
<u> </u>		Days		Days	<u> </u>	Days		<u> 2</u>	Days		
161 Weeks/13 Week Quarter	13	Weeks	13	Weeks	13	Week	s	13	Weeks		
ASSOC	ATED EQUEPMEN	T (CE and M	E docume	nts should be	filed for each pier	e of Equ					
(17) Control Equipment (CE) No.	B6-199-1	ICE,	B	6-199-1 [CEZ	Ba	5-199-1	I/CE.	5		
(18) Monitoring Equip. (ME) No.		<u> </u>									
	!—————	A	CTUAL E	MISSIONS		<u> </u>					
	<u> </u>	(21)		(22)	 _	 -	(24)	- 6	<u> </u>		
(19) Air Pollutant	(20) Emission Pactor	Emission Pa Units	Sou	rce of Emission Fector	(23) Ash or Sulfur %	,	Combined Control Efficiency %		Emissions us/Yr)		
PM-10											
TSP							,,				
SOx							· · · · · · · · · · · · · · · · · · ·	ļ 			
NOx				· 							
voc	· · · · · · · · · · · · · · · · · · ·			<u> </u>							
СО											
Lead											
a) CAS No.		12							_ - 7		
rcury	3	1b/10 ¹² I	STU AP	-42			0	1.6x1	0		
b, CAS No. Nickel	18	1ь/10 ¹² н	TU AP	-42			0	9.4x1	0-7		
c) CAS No. Selenium	23.42	1ь/10 ¹² в						1.2x1			
Selenium Sources of Emission Factors: CEN				-42	PALLE Worksheet		O I	1.2X1	<u> </u>		

IOWA OPERATING PERMIT APPLICATION - PART 1

Form 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

1 mpany/Facility Name			2) EIQ	No.				3) Form	4.0				
	77	ļ	-]	Page 4 of 4				
Iowa Army Ammuniti 4) Emissions Point No.	on Plant 5) Emissions Poi	int Descripti	on <	92-3	457	6		L					
B6-199-1/EPI	EWI			TACA 1	ے ح		SION	YEAR:	1993	•			
12//		SION UNIT	- ACTUAL OPERATIONS AND EMISSIONS										
7) EMISSION UNIT NO.	8) SCC NO.		9) D	ESCRIPTIC	N OF	PRO	CESS	·· <u>·</u>					
B6-199-1/EUI	<u> </u>		Sin	gle Chamb	er -	Rot	ary Ki	ln					
				L THROUGH									
10)- Raw Material			11) A	ctual Through	put - '	/early	Total		12) Units Raw Material				
No. 2 Fuel Oil				75	0	l		gal					
			al Oper	rating Rate/Sc	hedul	•		<u></u>					
	JANMA	R.		UPRIL-JUNE			JULY-38	EPT.		OCTDE	c		
13) Percent of Total Operating Time	25	%		25	%		25	%	<u>.</u>	25	%		
14) Hours/Day										/-			
	10	Hours		/0 H	ours		10	Hour	<u> </u>	10	Hours		
15) Days/Week	2	Days		Z Da	iys		Z	Days	¦ ;	2	Days		
161 Weeks/13 Week Quarter	13	Weeks	•	13 w	eeks		13	Week	s	13	Weeks		
	IATED EQUIPMEN	T (CE and A	4E doc	uments shou	d be f	led to	r each pie	ce of Equ	ipment)				
(17) Control Equipment (CE) No.	BG-199-1)	CEI		BG-19	9-1	fc	Ez	Bo	-199-	1/CE	3		
(18) Monitoring Equip. (ME) No.													
		A	CTU/	AL EMISSIC	NS								
(19) Air Pollutant	(28) Emission Pacter	(21) Emission F Units	actor	(22) Source of Emi Factor	ssion	Ash	(23) or Sulfur %		(24) ned Control clency %	ACTUAL.	25) Emissions vs/Yr)		
PM-10													
TSP								<u> </u>					
SOx			•										
NOx									·	<u> </u>			
Voc								·		 			
co													
Lead													
a) CAS No.	22	1b/10 ¹²		17.10					0	1.1x1	₀ -6		
b, JAS No.	22	16/10	RIU	AP-42					0	1.	<u>u</u>		
c) CAS No.		<u> </u>							·	<u> </u>			
Sources of Emission Factors: CEM	Stack Test Mass	Balance AP-4	2 . EPA	Fire _ EPA-XAT	 E' E'	ALLE	. Worksheel	Other - s	pecify				

iowa operating permit application - part 1 Form 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

) _mpany/Facility Name			2) EIQ No.					3) Form 4.0 Page <u>1</u> of <u>1</u>			
Iowa Army Ammuni	tion Plant			92-	3457			Page	of	<u> </u>	
4) Emissions Point No. B6-199-1/E91	5) Emissions Po EWI	int Descripti	on S	tack	for	6) EMIS	SION	YEAR:	199	3	
		TINU NOIS				ND EMISSIONS					
7) EMISSION UNIT NO.	8) SCC NO.		9) D	ESCRIP	TION OF	PROCESS					
B6-199-1/EUI	<u></u>					Rotary Kiln					
10) Raw Material		<u>-</u> -		L THROU		Yearly Total		45) 11-1		-1-1	
10)- Naw material				CUA INC	rogripat -	rearry rotal		12) UN	ts Raw M	atenai	
Propane -					374				gal	 	
	JANMA			LPRIL-JUI	e/Schedul	JULY-SE			OCTDE		
491 Daniel 4 Trans	3201110.			- ME-901	16	3001-321	<u>-1.</u>		OC1DE	<u>. </u>	
13) Percent of Total Operating Time	25	- %		25	%	25	%		25	%	
14) Hours/Day	10	Hours		/0	Hours	10	Hout	'S	10	Hours	
15) Days/Week	2	Days		Z	Days	Z	Days		Z	Days	
16) '4eeks/13 Week Quarter		Weeks		13	Weeks	13	Weel	<u> i</u>	13	Weeks	
,17) ASSOC	IATED EQUIPMEN	T (CE and	HE GOC	uments s	hould be f	lled for each piec	e of Eq	ulpment)			
Control Equipment (CE) No.	B6-199-1	ICE!		B6-	199-1	ICEZ.	BG	-199-1	/CE	3	
(18) Monitoring Equip. (ME) No.						<u></u>					
		F	CTU	AL EMIS	SIONS		_				
(19) Air Pollutant	(20) Emission Factor	(21) Emission F Units		Source of Fac	Emission	(23) Ash or Suther %		(24) ined Control Iclency %	ACTUAL	is) Emissions is/Y1)	
PM-10	0.4	1ь/1000	gal	AP-4	2			0	7.5x	10 ⁻⁵	
TSP	0.4	15/1000	gal	AP-4	2	<u></u>		0		10 ⁻⁵	
SOx	0.1	15/1000	gal	AP-4	2	0		0	0	<u> </u>	
NOx	14	15/1000	gal	AP-4	2			0	0.00	26	
Voc	0.5	1ь/1000	gal	AP-4	2			<u> </u>	9.4x		
CO	1.9	15/1000	gal	AP-4	2)	3.6x	10 ⁻⁴	
Lead											
a) CAS No. :maldehyde	0.018	1b/10 ¹²	BTU_	AP-4	2)	3.lx	10 ⁻¹⁰	
J) CAS No.											
c) CAS No.											
Sources of Emission Factors: CEM	Stack Test _ Mass	Balance AP-4	2 EPA	Fire EPA-	XATEF EP	A-LEE_ Workshoot .	. Other -	specify			

IOWA OPERATING PERMIT APPLICATION - PART 1

Form 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

Company/Facility Name	<u> </u>		2) EIQ No.	3) Form 4.0								
1		1			_,	Page 2	of	2				
Iowa Army Ammun: 4) Emissions Point No.	tion Plant 5) Emissions Po	int Decoring	92-34									
		air nesoriba		6) EMISSION YEAR:								
B6-199-2/EP5			Stack									
7) ENGCION UNIT NO		SSION UNIT	ACTUAL OPERATIONS									
7) EMISSION UNIT NO.	. 18) SCC NO.		9) DESCRIPTION OF PROCESS									
86-199-2/EUI			Single Chamber	Carbottom U	nit							
40) Bour Managed			ACTUAL THROUGHPUT	<u> </u>								
10) Raw Material			11) Actual Throughput -	Yearly Total		12) Uni	ts Raw N	laterial				
Contaminated Tras	h		484.05									
		Actu	al Operating Rate/Schedu			το.	ns					
	JAN-MA		APRIL-JUNE	JULY-SE	PT		OCTDE					
13) Percent of Total												
Operating Time	28	%	23 %	24	%		25	%				
				-								
14) Hours/Day	10	Hours	in Hours	Ì	Uara	_						
	10	nours	10 Hours	10	Hour	3	10	Hours				
15) Days/Week	4	Days	4 Days	4	Days		4 :	Days				
16) Weeks/13 Week Quarter	12.5	Weeks	10 Weeks	10.75	Week	rs.	11	Weeks				
ASSOC	LATED EQUIPMEN	T (CE and A	IE documents should be		e of Equ	ulpment)	177	² ひ				
(1/) Control Equipment (CE) No.	BG-199-	Z/CE,		EZ		CE.	3					
(18) Monitoring Equip. (ME) No.	NA											
		A	CTUAL EMISSIONS									
(19) Air Pollutant	(20) Emission Factor	(21) Emission F Units	(22) scter * Source of Emission Factor	(23) Ash or Sulfur %		(24) ined Control clency %	ACTUAL	26) Emissions rs/Yr)				
PM-10												
TSP												
SOx			•									
NOx												
voc												
со												
Lead												
a) CAS No.					n.			-00				
Chromium	14.8	mg/L	AP-42		7.	\$. 00	901X				
CAS No. Mercury	0.01	mg/L	AP-42		์ ส	95	1 2~	10 ⁻⁸				
c) CAS No.			1					-8				
Selenium	0.05	mg/L	AP-42		Ø	95	6.1x	10				

. IOWA OPERATING PERMIT APPLICATION - PART 1

Form 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

Company/Facility Name			2) EIQ	No	<u></u>			91 5	- 4 0	·····	
Sompanyi comey (carre		ľ	.,	110.			[3) Forπ	Page 1	of	2
Iowa Army Ammuni	tion Plant				<u>92-34</u>						
1 <u>-</u>	5) Emissions Po	nt Descripti	_	wp,		6)	EMIS	SION	YEAR:	199	3
B6-199-2/EB	<u> </u>		_	stack		L_					
		SION UNIT				_					
7) EMISSION UNIT NO.	8) SCC NO.		9) 0	ESCRIP	TION O	FPRO	CESS				
B6799-2/EUI				ngle Ch		Carbo	ttom U	nit			
				VL THROU							
10) Raw Material			11) A	etual Thro	ughput -	Yearly T	otal		12) Uni	ts Raw	Material
Contaminated Tras	h			4	84.05				to	ns	
	Actual Operation					ie_					
	JAN-MA	R.		APRILJUN	E		JULY-SE	PT.		OCTD	EC.
13) Percent of Total Operating Time	28	*		23	%		24	%		25	%
						[•				
14) Hours/Day	10	Hours		10	Hours		10	Hour	s	10	Hours
	ĺ	1									
15) Days/Week	4	Days		4	Days	۱ ن	4	Days		4	Days
	1								1		
16) Weeks/13 Week Quarter	12.5	Weeks		10	Weeks	1	0.75	Week	Nege of	11	Weeks
ASSOC	ATED EQUIPMEN		dE doc						<u> </u>	<u>+ +</u>	
(17)	<u> </u>]			<u> </u>	T -		,	
Control Equipment (CE) No.	BG799-	Z/CE/		BG-19	79-21	CEZ		B6-	199-Z	/CE	<i>ੌ</i> ਤ
(18) Monitoring Equip. (ME) No.	NA	!			- - -						
		- 1	CTU	AL EMIS	SIONS				·		
(19)	(29)	(21)		(2	• ;		3)		(24)		(25)
Air Pollutant	Emission Factor	Emission f Units	actor	Source or	Emission :		Sulfur %		ned Control clency %		L Emissions ons/Yf)
PM-10	15	1b/to	n	AP-	42				0	3.	63
				<u> </u>				i i			
TSP	15	lb/to	n	AP-	42				0	3.	63
SOx	2.5	lb/to		AP-	(2				0	0	605
	2.3	10/00	·	1 21 -	72			<u> </u>		<u> </u>	303
NOx	2	lb/to	n	AP-4	2				0	0.4	484
voc								-			
СО	20	1b/to	n	AP-4	2				0	4.8	34
Lead	25.25	mg/L		AP-4	2				0	3x:	10 ⁻⁵
a) CAS No.											
Arsenic	0.25	mg/L		AP-4	12				95	3x.	10 ⁻⁷
CAS No. Barium	5.0	mg/L		AP-4	.2				95	6.1	lx10 ⁻⁶
c) CAS No.	3.0										- 5
Cadmium	28	mg/L_		AP-4	2				95	3.4	x10
Sources of Emission Factors: CEM	Stack Test _ Mass (lalance AP-4	2 EPA	Fire EPA-	LATEF . EF	ALLE . Y	Vorksheet.	_ Other - 1	pecify		

10WA OPERATING PERMIT APPLICATION-PART 1 Form CA-01 CALCULATIONS

Duplicate this form for each form it will accompany in the application.

1) Facility Name		2) EIQ No. 92-3457
J. Emission Point No. BG-199-2 / EP 5	4) Emission Unit No. BG-199-2 / EU 1	5) Emission Unit Description or (SCC) No.

6) Calculations are provided in support of information reported on Form____,page

7) Emissions Calculations

Use in this form (or other paper with substantially the same information listed in questions 1-6 above) to document information provided on Part 1, forms 1.3 through 5.0. Include a description of any assumptions used in making the calculations. Include the calculations with the form it applies to in the application.

Ash Test Result Emission Calculations
Volume of ash collected from CWP - 742.35 cf
Air pollution control devices efficiency - 95%

742.35 cf x (1/.95) = 781.42 cf ash produced

Volume of Ash Emitted - 781.42 cf - 742.35 cf = 39.07 cf

Ash Analysis - The following are taken from an average of two samples. (ND = Not Detected)

	<u>ma/L</u>	<u>Samples</u>
As	L 0.25	(<.5 ND)
Ba	L 5.0	(<10, ND)
Cd	28	(10, 46)
Cr	14.8	(29, 0.6)
Hg	< 0.01	(<0.02, ND)
Pb	25.25	(<0.5, 50)
Sel	< 0.05	(<0.1, ND)
Sil	< 0.25	(<.5, ND)

Arsenic Emissions

Concentration of Arsenic in Ash - 0.25 mg/L

0.25 mg / L x 39.07 ft³ / yr x 28.32 L / ft³ x g / 1000 mg x lb / 453.59 g x ton / 2000 lb = 3.0×10^{-7} ton / yr

<u>13P</u>

15 lb waste / ton/burned x 968100 lb / yr x ton / 2000 lb = 7260.75 lb / yr x ton / 2000 = 3.63 ton / yr

<u>PM</u>10

The PM₁₀ fraction in the TSP is unknown so it was assumed that all the TSP was PM₁₀

2.5 lb waste / ton burned x 968100 lb / yr x ton / 2000 lb x ton / 2000 lb = 0.605 ton / yr

<u>NOx</u>

2 lb waste / ton burned x 968100 lb / yr x ton / 2000 lb x ton / 2000 lb = 0.484 ton / yr

CQ

20 ib waste / ton x 968100 ib / yr x ton / 2000 ib x ton / 2000 ib = 4.84 ton / yr

IOWA OPERATING PERMIT APPLICATION-PART 1 Form CA-01 CALCULATIONS

Duplicate this form for each form it will accompany in the application.

Cacility Name Army Ammunition Pla	ont	2) EIQ No. 92-3457
3) Emission Point No. BG-199-2 / EP 5	4) Emission Unit No. BG-199-2/ EU 1	5) Emission Unit Description or (SCC) No.

6) Calculations are provided in support of information reported on Form____,page

7) Emissions Calculations

Use in this form (or other paper with substantially the same information listed in questions 1-6 above) to document information provided on Part 1, forms 1.3 through 5.0. Include a description of any assumptions used in making the calculations. Include the calculations with the form it applies to in the application.

LEAD

25.25 mg / L x 39.07 ft² / yr x 28.32 L / ft² x g / 1000 mg x lb / 453.59 g x ton / 2000 lb = 3 x 10⁴ ton / yr

BARIUM

 $5.0 \text{ mg} / \text{L} \times 39.07 \text{ ft}^3 / \text{yr} \times 28.32 \text{ L} / \text{ft}^3 \times \text{g} / 1000 \text{ mg} \times \text{lb} / 453.59 \text{ g} \times \text{ton} / 2000 \text{ lb} = 6.1 \times 10^4 \text{ ton} / \text{yr}$

CADMIUM

28 mg / L x 39.07 ft² / yr x 28.32 L / ft² x g / 1000 mg x lb / 453.59 g x ton / 2000 lb = 3.4 x 10⁴ ton / yr

CHROMIUM

 $14.8 \text{ mg/L} \times 39.07 \text{ ft}^3 / \text{yr} \times 28.32 \text{ L} / \text{ft}^3 \times \text{g} / 1000 \text{ mg} \times \text{ib} / 453.59 \text{ g} \times \text{ton} / 2000 \text{ lb} = 0.000018 \text{ ton} / \text{yr}$

WCRCURY

 $0.01 \text{ mg/L} \times 39.07 \text{ ft}^2 / \text{yr} \times 28.32 \text{ L} / \text{ft}^2 \times \text{g} / 1000 \text{ mg} \times \text{lb} / 453.59 \text{ g} \times \text{ton} / 2000 \text{ lb} = 1.2 \times 10^4 \text{ ton} / \text{yr}$

SELENIUM

 $0.05 \text{ mg/L} \times 39.07 \text{ ft}^3 / \text{yr} \times 28.32 \text{ L} / \text{ft}^3 \times \text{g} / 1000 \text{ mg} \times \text{lb} / 453.59 \text{ g} \times \text{ton} / 2000 \text{ lb} = 6.1 \times 10^4 \text{ ton} / \text{yr}$

10WA OPERATING PERMIT APPUCATION - PART 1 FORTH 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

1) Company/Facility Name		[2	2) EIQ No.				3) F	OTR 4.0	1	,			
Iowa Army Ammunit	ion Plant	J		9:	2-3457			Page of4					
4) Emissions Point No.	5) Emissions Poi					6)					-		
186-199-2/EPS	Ci	WP 57	lac.	K		ON YEA	NR:	1993					
		SION UNIT	T - ACTUAL OPERATIONS AND EMISSIONS										
7) EMISSION UNIT NO.		-				PROCES							
B6-199-2/EUI	'		J -	gle Cha			•		•				
WITT TEAT				L THROU									
10) Raw Material						Yearly Total		12) Unit	Raw M	aterial		
No. 2 Fuel Oil					9200					gal			
		Actu	al Oper	rating Rat	-/Schedu	le .	-						
	AM-MAL	R. I		UPRIL-JUN	Æ	JULY	-SEPT.		(XCTDE	<u> </u>		
13) Percent of Total Operating Time	28	%		23	%		24	%		25	%		
14) Hours/Day	10	Hours		10	Hours	•	10 н	lours		10	Hours		
15) Days/Week	4	Days		4	0ays		4 0)ays		4	Days		
16) Weeks/13 Week Quarter	12.5	Weeks		10	Weeks	10.		Voeks		11	Weeks		
ASSOCIATED EQUIPMENT (CE and ME documents should be filed for each place of Equipment)													
Control Equipment (CE) No.	CE	=1			CE.	2		CE	-3				
(18) Monitoring Equip. (ME) No.	N	'A											
		A	CTU	AL EMIS	SIONS	····							
(19) Air Pollutant	(20) Enterion Factor	(21) Emission f Units	actor	(2 * Source of Fac	Emission	(23) Ash or Sulful		(24) combined Co Efficiency		ACTUAL!	Espissions Espissions		
PM-10	1.08	15/1000	gal	AP	-42			0	.	0.004	9		
TSP	2	15/1000	ga1	AP	-42			0	-	0.009	2		
SOx	1425	15/1000	gal	AP	-42	0.047		0		0.031			
NOx	20	15/1000	gal	AP	-42			0		0.092			
VOC	0.34	15/1000	ga1	AP	-42			0		0.001	5		
СО	5	15/1000	gal	AP	-42			0	-	0.023			
Lead a) CAS No.	8.9	1b/10 ¹²	BTU	AP	-42			00		5.7x10) ⁻⁶		
Arsenic	5	1ь/10 ¹²	BTU	AP	-42			0		2.7x10	•		
seryllium c) CAS No.	2.5	1b/10 ¹²	вти	AP	-42			0		1.6x10			
Cadmium *Sources of Emission Factors: CEM	11	1b/10 ¹²	BTU		-42 XATEF - E	PALLE Works	heet Oth	() her - specify	<u>, </u>	7×10 ⁻⁶	<u> </u>		

IOWA OPERATING PERMIT APPLICATION - PART 1 Form 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

41 Company/Facility Name		[2	Z) EIQ	No.		3) Form 4.0					
Iowa Army Ammun	ition Plant	- 1	•	9	2-3457			Pa	2	et	<u>. </u>
4) Emissions Point No.	5) Emissions Poi	nt Descripti	on Co	WP 5	tack	(- 6) C	MICCI/	0N V	CAD.		
B6799-2/E15			-ACTUAL OPERATIONS AND EMISSIONS								
		SION UNIT	_								
7) EMISSION UNIT NO.	B) SCC NO.		l '			FPROCES		_			-
B6799-2/EUI	<u></u>			Single LTHROU	Chambo	nit					
10) Raw Material						Yearly Total			12) Uni	ts Raw M	aterial
No. 2 Fuel Oil			9200							gal	
	AM-MAL	R.		PRIL-JUI	YE	JUL	Y-SEPT.	·		OCTDE	<u>c</u>
13) Percent of Total Operating Time	28	%		23	%		24	%		25	*
14) Hours/Day	10	Hours	<u> </u>	10	Hours		10	Hours		10	Hours
15) Days/Week	4	Days		4	0ays		- 4 1	Days	•	4	Days
16) Weeks/13 Week Quarter	12.5	Weeks		10	Weeks	<u> </u>		Weeks		11	Weeks
ASSOCIATED EQUIPMENT (CE and ME documents should be filed for each piece of Equipment)											
Control Equipment (CE) No.	Ci	=1			CE	Z			^E3	·	
(18) Monitoring Equip. (ME) No.	C. NA										
			CTU	VL EMIS	SIONS						
(19) Air Pollutant	(20) Emission Factor	(21) Emission f Units	factor		i) f Emission der	(23) Ash er Suffi		Combine	M) of Control oncy %	ACTUAL	IS) Emissions Is/Yr)
PM-10											
TSP											
SOx			-								
NOx											
voc			· 					. <u> </u>			
CO			_								
Lead											
a) CAS No. Chromium	57.5	1ъ/10 ¹	2 _{BTU}	AP-4	2					3.7x	
CAS No. Formaldehyde	319	1b/10 ¹	² BTU	AP-4	2			(0	2x10	-4
c) CAS No. Manganese	14	1ь/10 ¹	² BTU	AP-4	2			(0	8.9x	10 ⁻⁶

10WA OPERATING PERMIT APPLICATION - PART 1 FORM 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

1) Company/Facility Name			2) EIQ	No		13) Form	46				
Iowa Army Ammu	nition Plant		-,		2-3457		, , ,	Page 3	at	<u>4*</u>		
4) Emissions Point No.		int Descript	lon /			les l						
B6-199-2/EPS	5) Emissions Po	ant Gesei (p.		WPS,	ta ck	(a) EMISS	ION	YEAR:	1993			
BUTTIFE PS	EMH	SION HINE	- ACTU	AL COCE	ATIONS A	ND EMISSIONS						
7) EMISSION UNIT NO.		NOR ORLI				PROCESS			·			
BG-199-21EUI			Single Chamber Carbottom Unit									
05/17-6/24/	<u></u>			L THROU		Unit	[
10) Raw Material		·····				Yearly Total	ſ	12) Uni	ts Raw M	aterial		
No. 2 Fuel Oil	No. 2 Fuel Oil				9200				gal			
		Açtı	ual Oper	rating Rat	e/Schedul	•						
	AM-MAL	R.	/	PRIL-JUI	Œ	JULY-SEP	т.		OCTDE	Ĉ.		
13) Percent of Total Operating Time	28	%		23	%	24	*		25	%		
14) Hours/Day	10	Hours		10	Hours	10	Hour		10	Hours		
	i							1	•			
15) Days/Week	4	Days		4	Days	4	Days	1	4	Days		
		<u> </u>			;			<u>:</u>				
16) Weeks/13 Week Quarter	12.5	Weeks		10	Weeks	10.75			11	Weeks		
ASSOC	IATED EQUIPMEN	T (CE and	ME doc	uments si	hould be f	lled for each place	OF Equ	doment)				
Control Equipment (CE) No.	CE	· · · · · · · · · · · · · · · · · · ·			EZ			CES				
(18) Monitoring Equip. (ME) No.	NA				•							
			ACTU	AL EMIS	SIONS			· · · · · · · · ·	<u> </u>			
(19) Air Pollutoris	(20) Emission Pactor	(21) Emission Unit	Pactor	* Source of Pac	Emission	(23) Ash or Sulfur %	Combi gal	(24) ned Control cioncy %	ACTUAL	is) Emissions m/YI)		
PM-10												
TSP												
SOx			•						! !			
NOx					_				:			
VOC								·- · · · · ·	!			
СО												
Lead								······································				
a) CAS No. Mercury	3	1ь/10 ¹	2 _{RT11}	AP-4	2			0	1.9x1	.0-6		
" CAS No. Jickel	18	15/10 ¹		AP-4	-			0	1.1x1	0-5		
c) CAS No. Selenium	23.42	1Б/10 1 1Б/10 1		AP-4				0	1.5x1			
* Sources of Emission Factors: CE						A-LEE _ Workshoot	Other - 1					

IOWA OPERATING PERMIT APPLICATION - PART 1 FORTH 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

1) Company/Facility Name		· · · · · · · · · · · · · · · · · · ·	Z) EIQ	240			3) For	- 44		
Iowa Army Ammun	ition Plant	Į.	e) the		2-3457		3) 70	Page 4	d	4
4) Emissions Point No.	5) Emissions Poi	nt Descript	<u> </u>	WP		(6)	ICCION	VEAD.		
B6-199-2/EPS				ack				YEAR:	1993	
71 514001011 11117 110		SION UNIT				ND EMISSION				
7) EMISSION UNIT NO.	s) SCC NO.		1			F PROCESS				-
B6789-2/EUI				Single LTHROU		er Carbott	on Uni	<u> </u>		
10) Raw Material		11) Actual Through				Yearly Total		12) Uni	ts Raw M	aterial
No. 2 Fuel Oil				•	9200				gal	
•				rating Rat						
	j JAN-MAI	R.		LPRIL-JUN	! E	JULY	SEPT.		OCTDE	C.
13) Percent of Total Operating Time	28	*		23	%		24 %		25	%
14) Hours/Day	10	Hours		10	Hours	-	10 Hou	rs	10	Hours
15) Days/Week	4	Days	•	4	Days	!	4 Day	3	4	Days
16) Weeks/13 Week Quarter	12.5	Weeks		10	Weeks	10	.75 Wes	ats	11	Weeks
ASSOCI	ATED EQUIPMEN	T (CE and	ME doc	uments si			piece of E	pulpment)		
Control Equipment (CE) No.	CE	: 1			Cŧ	E Z		CE	3	
(18) Monitoring Equip. (ME) No.	J	I A								
		į	ACTU/	al emis	SIONS					
(13) Air Pollulant	(20) Emission Factor	(21) Emission Unit		* Source of Pac	Emission	(23) Ash or Suither	!	(24) bined Control Sicioney %	ACTUAL	26) Emissions ne/Y1)
PM-10										
TSP									<u> </u>	
SOx			•						<u> </u>	
NOx							-	· · ·	<u> </u>	
voc								 	!	
со									j	
Lead									<u> </u>	
a) CAS No. POM	22	1ь/10 ¹	² BTU	AP-42				0	1.4x1	0-5
CAS No.										į
c) CAS No.										
	_ Stock Test _ Mass					24 1 0 C March 1		-		

IOWA OPERATING PERMIT APPLICATION-PART 1 Form CA-01 CALCULATIONS

Duplicate this form for each form it will accompany in the application.

" Facility Name 2) EIQ No. 92-3457 **Army Ammunition Plant** 4) Emission Unit No. 3) Emission Point No. 5) Emission Unit Description or (SCC) No. B6-199-21*EP*S 16799-2/EUI Incinerator 6) Calculations are provided in support of information reported on Form 4 page 7) Emissions Calculations Use in this form (or other paper with substantially the same information listed in questions 1-6 above) to document information provided on Part 1, forms 1.3 through 5.0. Include a description of any assumptions used in making the calculations. Include the calculations with the form it applies to in the application. #2 Fuel Oil Used in 1993 - 9200 gal / yr 138690 BTU / gal heat content $1.08 \text{ lb} / 1000 \text{ gal } \times 9200 \text{ gal} / \text{yr} \times \text{ton} / 2000 \text{ lb} = 0.0049 \text{ ton yr}$ **TSP** 2 ib / 1000 gal x 9200 gal / vr x ton / 2000 ib = 0.0092 ton vrSOx 142 lb x .047 / 1000 gal x 9200 gal / yr x ton / 2000 lb = 0.030 ton yr 20 lb / 1000 gal x 9200 gal / vr x ton / 2000 lb = 0.092 ton <math>vrJ.34 lb / 1000 gal x 9200 gal / yr x ton / 2000 lb = 0.0015 ton yrCQ 5 lb / 1000 gal x 9200 gal / yr x ton / 2000 lb = 0.023 ton yr 4.2 lb / 10^{12} BTU x 138690 BTU / gal x 9200 gal / yr x ton / 2000 lb = 2.7 x 10^4 ton / yr 2.5 lb / 10^{12} BTU x 138690 BTU / gal x 9200 gal / yr x ton / 2000 lb = 1.6 x 10 4 ton / yr **CADMIUM** 11 lb / 10^{12} BTU x 138690 BTU / gal x 9200 gal / yr x ton / 2000 lb = 7.0×10^{-6} ton / yr **CHROMIUM** $57.5 \text{ ib} / 10^{12} \text{ BTU x } 138690 \text{ BTU} / \text{gal x } 9200 \text{ gal } / \text{yr x ton} / 2000 \text{ lb} = 0.000037 \text{ ton} / \text{yr}$ 319 lb / 10^{12} BTU x 138690 BTU / gal x 9200 gal / yr x ton / 2000 lb = 0.0002 ton / yr **MANGANESE** 14 lb / 10^{12} BTU x 138690 BTU / gal x 9200 gal / yr x ton / 2000 lb = 8.9×10^{-6} ton / yr **MERCURY** 10^{12} BTU x 138690 BTU / gal x 9200 gal / yr x ton / 2000 lb = 1.9 x 10 $^{-6}$ ton / yr

IOWA OPERATING PERMIT APPLICATION-PART 1 Form CA-01 CALCULATIONS

Duplicate this form for each form it will accompany in the application.

1) Facility Name v- Army Ammunition Plant		2) EIQ No. 92-3457
J Emission Point No. 36-199-2/ <i>E</i> チ5	4) Emission Unit No. B 6 7 9 9 - 2 / EUI	5) Emission Unit Description or (SCC) No.
	- ···· 	

6) Calculations are provided in support of information reported on Form 4, page 3 & 4

7) Emissions Calculations

Use in this form (or other paper with substantially the same information listed in questions 1-6 above) to document information provided on Part 1, forms 1.3 through 5.0. Include a description of any assumptions used in making the calculations. Include the calculations with the form it applies to in the application.

NICKEL

 $18 \text{ lb} / 10^{12} \text{ BTU x } 138690 \text{ BTU } / \text{ gal x } 9200 \text{ gal } / \text{ yr x ton } / 2000 \text{ lb } = 0.000011 \text{ ton } / \text{ yr}$

SELENIUM

 $23.42 \text{ lb} / 10^{12} \text{ BTU x } 138690 \text{ BTU } / \text{gal x } 9200 \text{ gal } / \text{ yr x ton } / 2000 \text{ lb} = 0.000015 \text{ ton } / \text{ yr}$

LEAD

8.9 ib / 10^{12} BTU x 138690 BTU / gal x 9200 gal / yr x ton / 2000 lb = 5.7 x 10 4 ton / yr

<u>POM</u>

 $\frac{22 \text{ lb}}{10^{12}}$ BTU x 138690 BTU / gal x 9200 gal / yr x ton / 2000 lb = 0.000014 ton / yr

IOWA OPERATING PERMIT APPLICATION - PART 1 FORM 4.0 EMISSION UNIT - ACTUAL OPERATIONS AND EMISSIONS

1) Company/Facility Name	· · · · · · · · · · · · · · · · · · ·	2) EIC	No.	3)	Form 4.9	
Iowa Army Ammuni	tion Plant		92-3457		Page 1	of1
4) Emissions Point No.	5) Emissions Poi	nt Description (CUP	6) 53330		
B6799-2/EP5	}	Stack		EMISSIO	ON YEAR:	1993
			UAL OPERATIONS A			
7) EMISSION UNIT NO.	8) SCC NO.	_ (e	DESCRIPTION O	F PROCESS		-
B6799-2/EUI				Carbottom Uni	t	
461 (0			AL THROUGHPUT	<u> </u>	400 101	
10) Raw Material		111)	Actual Throughput -	Tearly I ocali	12) UM	ts Raw Material
Propane			441		ga	1
			erating Rate/Schedu			
	JAN-MA	R.	APRILJUNE	JULY-SEPT.		OCTDEC.
13) Percent of Total Operating Time	28	*	23 %	24	%	25 %
14) Hours/Day	10	Hours	/O Hours	10	Hours	/O Hours
				· · · · · · · · · · · · · · · · · · ·		
15) Days/Week	4.,	Days	4 Days	4 (Days	4 Days
16) Weeks/13 Week Quarter	12.5	Weeks	/O. Weeks	10.75	Neeks /	/ Weeks
ASSOC	ATED EQUIPMEN	T (CE and ME do	cuments should be	filed for each piece o	f Equipment)	
Control Equipment (CE) No.	C	EL	CA	= z	CE	3
(18) Monitoring Equip. (ME) No.	N	<u> </u>				
		ACTU	IAL EMISSIONS			
44-64	720	(21)	(22)	1 777	(24)	(24)
(19) Air Pollutant	(20) Emission Factor	Emission Factor Units	* Source of Emission Factor	(23) Ash or Sulfur %	Combined Control Efficiency %	ACTUAL Emissions (Tens/Yr)
PM-10	0.4	1b/1000 ga	1 AP-42		0	0.0008
TSP	0.4	1b/1000 ga	1 AP-42		0	0.0008
SOx	0.1	1b/1000 ga	1 AP-42	0	0	0
NOx	_14	1b/1000 ga	1 AP-42			0.031
voc	0.5	1b/1000 ga	1 AP-42		0	0.0011
СО	1.9	1b/1000 ga	1 AP-42		0	0.0042
Lead						
a) CAS No.		12				3.6x10 ⁻⁹
Formaldehyde CAS No.	0.018	1ь/10 ¹² вти	AP-42		0	3.0x10
c) CAS No.						
* Sources of Emission Factors: CEN	Sinck Test Macs	Balance AP-42 EF	A-Fire SPA-YATER S	PALLES Workshoot . Of	her - Specify	

IOWA OPERATING PERMIT APPLICATION-PART 1 Form CA-01 CALCULATIONS

Duplicate this form for each form it will accompany in the application.

3) Emission Point No.

3) Emission Point No.

3) Emission Point No.

3) Emission Unit No.

3) Emission Unit Description or (SCC) No.

3) Emission Unit Description or (SCC) No.

4) Emission Unit No.

5) Emission Unit Description or (SCC) No.

4) Emission Unit No.

5) Emission Unit Description or (SCC) No.

6) Calculations are provided in support of information reported on Form 4, page 1

7) Emissions Calculations

Use in this form (or other paper with substantially the same information listed in questions 1-6 above) to document information provided on Part 1, forms 1.3 through 5.0. Include a description of any assumptions used in making the calculations. Include the calculations with the form it applies to in the application.

<u>ACTUAL EMISSIONS</u>

 $\frac{PM_{10}}{0.4 \text{ lb}} / 1000 \text{ gal x } 4416 \text{ gal / yr x ton / } 2000 \text{ lb} \approx 0.0008 \text{ ton / yr}$

TSP 0.4 lb / 1000 gal x 4416 gal / yr x ton / 2000 lb = 0.0008 ton / yr

 $\frac{SOx}{0.1 \text{ lb} / 1000 \text{ gal x 4416 gal / yr x ton / 2000 lb} = 0 ton / yr}$

≤ .→ lb / 1000 gal x 4416 gal / yr x ton / 2000 lb = 0.031 ton / yr

<u>VOC</u>
0.5 ib / 1000 gal x 4416 gal / yr x ton / 2000 ib = 0.0011 ton / yr

 $\frac{CO}{1.9 \text{ lb}} / 1000 \text{ gal x 4416 gal / yr x ton / 2000 lb} = 0.0042 ton / yr$

FORMALDEHYDE 0.018 lb / 10^{12} BTU x 91600 BTU / gal x 4416 gal / yr x ton / 2000 lb = 3.6 x 10^{4} ton / yr

Mason & Hanger-Silas Mason Co., Inc. Iowa Army Ammunition Plant Environmental Assessment, 1995

Enclosure No. 7

IOWA ARMY AMMUNITION PLANT INSTALLATION RESTORATION PROGRAM SITE SUMMARY CHART

1.	Line 1 (IAAP-001)
2.	Line 2 (IAAP-002)
3.	Line 3 (IAAP-003)
4.	Line 3A (IAAP-004)
5.	Lines 4A & 4B (IAAP-005)
6.	
7.	Line 6 (IAAP-007)
8.	Line 7 (IAAP-008)
9.	Line 8 (IAAP-009)
10.	Line 9 (IAAP-010)
11.	Line 800 (IAAP-011)
12.	Explosive Disposal Area
	(IAAP-012)
13.	Former Line 1 Impoundment
	(IAAP-016)
14.	Pesticide Pit (IAAP-017)
₂ 5.	Inert Disposal Area
	(IAAP-020)
16.	Demolition Area/Deactivation
	Furnace (IAAP-021)
17.	Contaminated Waste Processor
	(IAAP-024)
18.	Explosive Waste Incinerator
	(IAAP-025)
19.	Main Sewage Treatment
	Plant/Drying Beds (IAAP-026)
20.	Fly Ash Landfill (IAAP-027)
21.	Construction Debris Landfill
	(IAAP-028)
22.	Line 3A Sewage Treatment
	Plant/Sludge Drying
	(IAAP-029)
23.	
24.	Yard B Ammunition Box
	Chipper Disposal Pit
٥-	(IAAP-031) Burn Cages/Burn Cage
25.	Landfills (IAAP-032)
26	North Burn Pads (IAAP-036)
26.	North Burn Pads (IAAF-036)
27.	(IAAP-037)
ាន.	Building No. 600-86 Septic
`O.	System (IAAP-038)
29.	Fire Training Pit (IAAP-039)
30.	Roundhouse Transformer
JV.	MORTHURD TERMINET

Storage Area (IAAP-040)

- 31. Line 3A Pond (IAAP-041)
 32. Fly Ash Disposal Area
 (IAAP-043)
- 33. Line 800 Pink Water Lagoon (IAAP-044)

Line l

												197	93
hem	Permit	Source	Year	Source	Centrel		Stack Height		Air Flow Rate		sions	Act Emle	None
No.	No.	No.	Installed	Description	Device	Hre/yr	Feet	Deg. F	SCFM	Particulate	T/Yr	Particulate	T/Yr
	89-A-022	1-01/EP1	1989	Pibbon Blender	Dry Filter	30	7	70	1145	PM-10	0.001314	PM-10	0,000053
						l	<u> </u>			TSP	0,001314		0.000053
2	88-A-127	1-01/EP3	1988	High Shear Mixer	Solvent recovery	100	4	70	13	VOC	24.48	L	0
	ï									MEK	24.48		0
3	88-A-126	1-01/EP5	1988	Double Cone Blender	Dry Filter	7.5	A.G. 14	70	1145	PM-10	0.001095		0.000053
]				TSP	0.001095	TSP	0.000053
4	88-A-128	1-01/EP6	1988	Screener dust removal	Dry Filter	100	A.G. 14	70	1363	PM-10	0.000136	PM-10	0.000053
			 		-\					TSP	0.000136		0.000053
5	88-A-129	1-01/EP7	1986	Hammer Mill	Dry Filter	100	A.G. 14	70	2580	PM-10	0,000186	PM-10	0.000053
			1	<u> </u>						TSP	0.000188	TSP	0.000053
6	Grandfathered	1-02/EP1	1953	Boller #6 Fuel Oil	None	0	A.G. 60	500	17578	PM-10	0.04	Not in oper	ation since
			 		<u> </u>	1	<u> </u>	 	· · · · · ·	TSP		CY 1979	
				(1	\ 			SOx	340.6		
				1						NOx	59.06	3	
				1	<u> </u>	1				VOC	0.3		
						·			1	CO	5.37		
							T			Lead	0.017	·	
						1		1		Arsenic	0.01069		
					_ 	1		1	1	Beryllium	0.000675		
	 			 		1		 	 	Cadmium	0.0182		·
	 		- 	 		 	 	1	t	Chromlum	0.011976		t
	 			† 	_	 		-	 	Formaldeh			
	 	 		 	- 		 	 		Manganes			
	 	 		\	 	1		 		Mercury	0.00268		1
				 		1		 	 	Nickel	0.254541		
	 	 		 			 		 	Selenium	0.00610		
	}				- 	 		· }	}	POM	0.0012		
7	Grandfathere	1 - 02/FP2	1951	Boller #8 Fuel ON	None		A.G. 60	500	17574	PM - 10		Not in ope	ration since
	0.0		-{	199707		-{	*\ <u>'``</u>	┪ ~~~	· · · · · · · · · · · · · · · · · · ·	TSP	12.80		
	†					1	 		 	SOx	340.0		
	 			· · · · · · · · · · · · · · · · · · ·		1	· · · · · · · · · · · · · · · · · · ·		<u>† </u>	NOx	59.0		
	 			·{- 					 	voc	0.		
	ļ	·	_		 		- 		 	co	5.3	7	
	 	<u> </u>						 	1	Lead	0.01		1
	 	 					- 	 	 	Areenio	0.0106		
	 	 				 	-	+	+	Beryllium	0.00067		
	 	 		· 		-} -	- 	 	 	Cadmium	0.0007		
	}	 		-}		-}	+	┪	1	Chromium			-}
	 	 					- 		 	Formaldeh			
	 	 	- {		_	-{			 -	Manganes			-
	 	 		·	·-				 	Mercury	0.00268		+
	 	 	_		_		- 		 	Nickel	0.25454		-
	·	 		-		-{		-	· 	Selenium	0.00610		
	 -	 			·		- 		 	POM	0.0012		- -
	Grandfathere	I DENIER		Cleaning Vent	None	200	n	4 70	- BA	voc		8 VOC	0.06
	Grandfathere			Cleaning Vent	None	20	<u> </u>	70	1 100	voc		1 VOC	0.05

Line 1

Item	Permit	Source	Year	Source	Control	Run Time	Stock Height	Temp	Air Flow Rate	Pote	ntiel Inione	Actu Emise	
No.	No.	_No.		Description		Heavy		Deg. F	SCFM				TA
10.	Needed	1-052/EP29	Installed 1988	Cleaning Vent	Device None	200	Feet	70	SCPM	Particulate VOC	T/Yr	Particulate VOC	0.068
	Needed	1-052/EP45	1975	Venturil eyetem	None	800		70	285	PM-10	0.000	PM-10	0.00022
	144666	1-03226743	10/3	Valuatii ayatain	110110	1	 			TSP	0.07731		0.00022
	Not required	4 050/5046	1000	Microdyne system	Wet type ecrubbe	800	 	70	8400	PM-10		PM-10	0.00108
12	HOL LAGONAG	1-032EF46	1900	microckie skerem	HOLLYPS SCIUDOS	- 600	 		8100	TSP	0.1992		0.00108
- 13	Not required	4 050/5043	1000	Durat collection average	Wattura	800	A.G. 15	70	1500			PM-10	0,00041
13	1401 tadaitea	1-034EP47	1960	Dust collection system	Wet type ecrubbe		N.U. 13		1300				
- 44	A 4 4	4 4 2 2 2 2 2 2 2	l			I—— <u></u>	ļ	 		TSP	0.0132		0,000041
14				Cleaning Vent Cleaning Vent	None None	200	3	70			0.34	VOC	0.34 0.237
16			1982	Inspection Table						PM-10		PM-10	0.000432
16	00-A-122	1-TWEPZZ	1800	Inspection (sole	Wet type ecrubbe	2000	<u>' </u>		1300	TSP	0.00876		0.000432
		ļ	 					ļ	 	VOC		VOC	0.000432
17	Not required	110/E022	 	Fugilive surface coaling	None	2040	·	70	NA	VOC		voc	0.023
17	MOL LAGURAD	1- TUYEF23	 	LOGINA STURES CORNED	None	2040	<u>'</u>	70	100	MEK		MEK	0.023
	pending	1-10/EP24	1555	Estano booth	Dry Filter	2040		70	2100	PM-10		PM-10	0.0075
10	pending	1-IUEFZ4	1980	Carana pooru	Uty Filter	2010	<u>'</u>	//	2100	TSP	4.2	TSP	0.0075
	 	ļ				·}	·	 	 	VOC		VOC	0.364
	 		∤		 	 		 	 	MEK		MEK	0.364
	A	40/5000	 	F-4	Al		, ,	160					0.0682
- 19	Grandfathere	1-10/EP20	1900	Estane drying oven	None	2040	<u>'</u>	100	170	VOC		VOC	0.0682
			·	 	l			. <u>-</u>		MEK	38.60	MEK VOC	
	Grandfathere			Cleaning Vent	None	200		70					0.342
21			1981		None	200			1920	VÕC	0,34		0.171
55			1984		None	200			1579	VOC VOC		VOC	0.171
23			1982			200					0.27		0.27
24	Not required	1-11/EP3	 	Fugitive surface coaling	None	·	D	70	NA	VOC	43.5		
		 	ļ		·				<u> </u>	Toluene	0.67		
	 	 				.			<u></u> -	Xylene	10.6		
25	Not required	1-11/EP23	- 	Peint Boeth	Wet filter	-\ <u>-</u>		70	NA	PM-10	45.6		
	ļ <u>.</u>	<u> </u>			 			_		TSP	97.		
	 	 -	. 					.		VOC	827.		 _
	 	<u> </u>	_			.l	_	ļ <u>.</u>		Toluene	12.8		
	 	\			. <u></u>	J		. 		Xylene	20		0.000
	Not required		1986			30			NA .	VOC		1 VOC	0.0321
27			1986		None	30		4 70				5 VOC	0.07
26			1986	Cleaning Vent	None	30		4 70				4 VOC	0.03
29	90-A-232	1-12/EP14	1990	Paint Booth	Ory Filter	80	0	8 70	525	0 PM-10		9 PM-10	0.0000
										TSP		9 TSP	0.0000
									_i	VOC		9 VOC	0,0021
										Ethy glyco	0.045	4 Ethy glycol	
30	90-A-233	1-12/EP15	1990	Paint Booth	Dry Filter	80	0	9 7	631	D PM-10	0.028	9 PM-10	0.0007
						I				TSP	0.028	9 TSP	0.0007
										voc		7 VOC	0.50
										Chromlum		4 Chromium	0,0007
										MEK		2 MEK	0.11
										Toluene	4,32		0.12
1	<u> </u>							1		MIBK	1.401	6 MIBK	0.00

Line l

Item	Permit	Source	Yeer	Source	Control	But Time	Stack Height	Temp	Air Flow Rate	Pote	ntial alona	Actu Emisa	
No.	No.	_ No.	Installed	Description	Device	Healye	Feet	Deg. F		Particulate	T/Yr	Particulate	TAL
	Needed	1-12/EP16		Paint drying even	None	800		160	SCFM AAR	VOC		VOC	0.0943
		1-126110		T SINE OF JING OVER	110114	-			043	MEK	0.9196		0.0221
			 							Toluene		Toluene	0,02338
			 					 		MIBK	0,2628		0,0005
12	Not required	1 - 19/E017	 -	Fugitive paint & explosive	Napa	800	 	70	NA	VOC	1.5542		0.04431
	1101 10 401100	I-INCIII	 	TO BILLY OF PARTY OF THE PARTY	140114		 		INC	Ethy glycol		Ethy glycol	0.000018
			 		·		 	 		MEK		MEK	0.000735
			}		} 	╼╌┧╌╌┈╌╌	}		}	Toluene		Toluene	0.00781
			 	· · · · · · · · · · · · · · · · · · ·	ļ	<u></u>	l	 	 	MIBK		MIBK	0.00017
			 	<u> </u>	ļ		 	 	 	PM-10		PM-10	0.228
			 		 		 	 	 _	TSP		TSP	0.228
11	Grandfathere	1 - 12/ED18	1986	Cleaning Vent	None	260	A.G. 10	70	2350			voc	0.034
	Needed	1-13/EP2	1991		None	<u>250</u>		70			0.034	voc	0.204
	Needed	1-13/EP3	1990		None	250		70				voc	0.033
	Needed	1-13/EP5	1991		None	250		70				voc	0.033
	Not required	1-13/EP8	1	Fugitive paint emissions	None	1000			NA 1200	voc		Ivoc	0.01098
	tagt radorrag	1-19/6/6	-{	raditive paint emissione	140114		 	· · · · · ·	 	Toluene		Toluene	0.01034
				 	 		 	 	 	MIBK		MIBK	0.0034
			· 	·}	 		 	 	 			Xylene	0.02447
20	Needed	1-13/EP7	1	Cleaning Vent	None	250	· 	70	5600	Xylene VOC	1,6581	VOC	0.02447
	Needed	1-13/EP9			None			70				VOC	
39	Mesoso	1-13/EP9	1900	Paint drying oven	Hone		A.Q. 25	70	1000	VUC		Xylene	0.2135
	 			ļ	<u> </u>			 	 	Xylene		MIBK	0.0731
	 -		 	·{	·		- 	{	 	MIBK		Toluene	0.01
40	40 4 040	4 40/5046	1	15-1 K	5 40		1.0.00	 		Toluene			0.0163
40	88-A-049	1-13/EP10	1900	Paint booth	Dry filter	1000	A.G. 23	70	8000			PM-10	0.0107
				· 			↓ _	 	} -	TSP	0.506	ISP	0.0107
	ļ			ļ	·		- 	-		VOC	52.8	voc	0.177
	 		-\	·	\	{			 	Xylene		Xylene	0,391
	 	 			 	 	- 	 	 	Toluene MIBK		Toluene MIBK	0.054
41	Needed	1-13/EP11		Explosive processing	None	2000	. -	70	100	PM-10		PM-10	0.2102
7,1	1444040	1- INEF II	1900	Expidate bloceaning	MOUA		<u>'</u>		1800	TSP		TSP	0.2102
42	Needed	1-13/EP13	1000	Cleaning Vent	None	500	.	70	600	MEK		MEK	0.889
	Needed	1-13/EP14		Adhesive Application	None	100				VOC		7 VOC	
			1900										0.167
44	Not required	1-18/EP1		Fugitive paint emissions	None	100	<u>'</u>	3 70	NA	VOC		VOC	0.01759
	 	ļ	_	<u> </u>	·			 	 	Xylene		2 Xylene	0.02142
	 	ļ	_	·	-		-			Vinyl aceta	0.28	MEK	0.00587
	}	 		1	·}		-	<u> </u>	 	Ethy glycol		l Ethy glycol	
	 			<u> </u>	· 			- 	. -	Toluene		7 Toluene	
		}	-\	<u> </u>	- 			- 	.	Tol 2,4 Dile		Tol 24 died	
	1	 			-		<u>. </u>	. . <u></u> .	 	Ethy benze		Ethy benze	
45			198		None	100		70		VOC		VOC	0,009
46	94-A-172	1-18/EP10	1994	Paint Booth	Dry Fifter	100	9	7 70	2000	PM-10		4 PM-10	0.01769
	 	 		_	-	 	-	 	 	TSP		TSP	0.01769
	 	 		<u> </u>	·		 -	 	·}	VOC		VOC	0.28
	<u> </u>	<u></u>		_L	<u> </u>				<u> </u>	Xylene	35,10	Xylene	0.341

Line i

									Air Flor	Pote	ntial	Actu	امر
Rem	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Rate	Emi	eelons	Emise	ione
No.	No.	No.	Installed	Description	Device	Hrefyr	Foot	Deg. F	SCFM	Particulate	T/Yr	Particulate	TNr
										Vinyl Aceta	4.61	Vinyl Aceta	0
										Ethy glycol	0,817	Ethy glycol	0
									T	Toluene	4.75	Toluene	0
							l			Tol 24 diled	0.31	Tol 24 diled	0.005
										Ethy benze	1,25	Ethy benze	0.022
			T				1 <u>-</u>					MEK	0.094
47	•	1-16/EP11	T	Paint drying oven	None	1000	A.G. 15	160	NA	VOC	10.726	voc	0.7149
			1						1	Xylene		Xylene	0.0641
							_	1		Vinyl aceta	0.865	Vinyl acets	0
										Ethy glycol		Ethy glycol	0
			l							Toluene		Toluene	0
										Tol 24 disc		Tol 24 diled	
										Ethy benze	0.235	Ethy Benze	0.0041
												MEK	0.0176
48	Not required	1-40/EP1		fugitive paint emissions	None	1500	3	70) NA	VOC	45.0725		0.00474
			1				<u> </u>			Toluene	0.7861	Toluene	0.000252
	<u> </u>	<u> </u>	<u> </u>]		 	<u> </u>		Xylene	1497,252	Xylene	0.003693
		<u> </u>	<u> </u>	<u> </u>			<u> </u>	ļ		MIBK		MIBK	0.000027
49	Grandfathere	1-40/EP5	1950	Paint Booth	Wet Filler	0	A.G. 6	70) NA	PM-10		PM-10	0
L		<u> </u>	<u> </u>		<u> </u>		<u> </u>			TSP		TSP	0
L					\		\ <u>.</u>			voc		VOC	0
										Toluene		7 Toluene	0
50	90-A-142	1 - 40/EP6	1990	Paint Booth	Dry Filter	800	A.G. 8	70	0 0	50 PM-10		PM-10	0.002534
		<u> </u>	1	<u> </u>	 			.	1	TSP	0.4959		0.002534
			·I	<u> </u>			ļ		<u> </u>	VOC		7 VOC	0.0523
ļ		ļ	<u> </u>	<u></u>	ļ		· 			Chromate	0.07	2 Chromate	0.000116
ļ	ļ	 			ļ	_	<u> </u>	 		Lead	0.0004	B Lead	4.0E-06
	ļ	 	- 	.	ļ		 	 	- 	Xylene		Xylene	0.10893
}	ļ	 		 			-{			MIBK		2 MIBK	0.00051
<u> </u>	 	 	-	ļ	ļ		- 	↓		Toluene		8 Toluene	0.00535
51	00 1 000			15-1-15	Day Files	 ;	,	<u> </u>	. ,	Chromlum 200 PM = 10		1 Chromium	0.0004
) <u>31</u>	90-A-231	1-53/EP1	1990	Paint Booth	Dry Fitter		<u>{</u> }	?}—— <u>"</u>		TSP		TSP	- 0
	 				·		- 			voc		7 VOC	0
	 	 	- 	· 	 	{	-{			Toluene			
		4 64555	-			— — — —		. -	-	VOC		6 Toluene 1 VOC	0.08075
<u>52</u>	Not required	1-61/EPZ		Fugitive paint emissions	None	100	' '	' '	O NA	MEK		6 MEK	0.01877
}	 	1	-}		·}		- 	-}		Toluene		7 Toluene	0.019998
	Needed	1-61/EP3	100	Classian Vest	None	400		. ;	0	559 VOC		VOC	0.01999
54			1990	Cleaning Vent	Dry Filter	56				370 PM - 10		7 PM-10	0.000078
├ ──	10-V-300	1-01/EF4	- <u>'a/</u>	r ant byoth	NA LUGA		' <u>'</u> '	' '	* 	TSP		7 TSP	0.000078
	 					-	 -	-	 	VOC		VOC	0.00070
 	 	 					-{ 	-{		Chromium		6 Chromium	3.9E-06
	 	 			·					MEK		7 MEK	0.00057
	 	 		-	·		1	 		Toluene		1 Toluene	0,00259
40	Not required	1-61/FPE	1071	Flesh off Oven	None		10	7	ō	585 VOC		6 VOC	0.001356

									Alr Flow	Poter	NIA T	Actu	
Nem	Permit	Source	Year	Source	Control	Sun Time	Stack Height	Tama	Rete		eione	Emiss	
No.	No.	No.	Installed	Description	Device	Hre/ys	Feet	Deg. F		Particulate 1		Particulate	TAL
110.	110.	110,) Itiotestad		Device	1.114(1)	1 441	044.1	SOFM	Toluene		Toluene	0.000246
			 	<u></u> ,	···					MEK	2.84	MEK	0.000054
56	Not required	1-01/FP8	1978	Oven	None	50	10	160	350	voc	30.26		0.001356
		. 0., 5.	 			-	ļ			Toluene		Toluene	0.000246
			 -				 	 		MEK		MEK	0,000054
57	80-A-076	1-61/FP7	1980	Paint Booth	Dry Filter	700		70	5990	PM-10		PM-10	0.0103
} <u></u> -	30 7, 0.0	· · · · · · · · · · · · · · · · · · ·	 		<u> </u>	- 	 			TSP	0.0811		0.0103
			 			-{	 			voc	37.60	Voc	1,112
		 	·			-	I			Chromlum		Chromlum	0.010
		 	 -				 			MEK		MEK	0.299
			t		· · · · · · · · · · · · · · · · · · ·	- 	 	<u> </u>		Toluene	6.2	Toluene	0.2697
59	Not required	1-61/EP8	1960	Flash off Oven for paint	None	700	5	160	2500			voc	0.121
	<u> </u>	1	 		-	1	1			Toluene	1.0061	Toluene	0.0296
			1					1	1	MEK	0.555	MEK	0.0281
60	Not required	1-61/EP9	1980	Paint drying oven	None	700	5	160	105	VOC	5.53	VOC	0.121
		1			1					Toluene	1,0061	Toluene	0.0296
										MEK	0.555	MEK	0.0281
	Needed	1-61/EP10	1990	Cleaning vent	None		A.G. 15	70			0.066		0.066
	Not required			Fugitive adhesiev & clean	None	700			NA	VOC	0.271		0.271
63	Grandfalhere	1-62/EP1	1951	Boller #2 & N. G.	None	147	A.G. 44	500	17578			PM-10	0.000551
										TSP		TSP	0.000551
	<u> </u>					_			ļ. <u></u>	SOx	8,613		0.000024
		<u> </u>						<u> </u>		NOx	49.51	NOx	0,005626
	<u> </u>	 	<u> </u>			_	·	- -		VOC	6,255	VOC	0.001406
		 		ļ <u></u>			·	·		CO	6,855		0,000113
	ļ	. 		<u> </u>		_		 		Lead	0.0016		
L	 	<u> </u>	-}		<u> </u>	_}	 		 	Arsenio		Areenio	-
	ļ	 				_	·	 	ļ	Beryllium	0.00044	Berylllum	
 	 	 	- 	┦ ── -	.l.————	- 		 		Cadmium		Cadmium	
	 	 	- 	·····	ļ			.	 	Chromium		Chromium	3.7E-00
 	 	 		- 	ļ	_	-		 	Formeldeh		Formaldeh Manganes	J./E-00
_		 -	 	· 	-{ 		·}	┨───	 	Manganese	0.002	Mercury	
	 	 	 		 		 		 	Nickel		Nickel	
	 	- 		 	· 				 	Selenium		Selenium	
	 				ļ			-} -	1	POM	0.0039	1 SOLUTION	
	 	 	- 		-		- 		 	Benzene		Benzene	9.2E-0
	1 Companyath	4 46/554		Boller #2 & N.G.	None	- 	A.G. 44	500	172-2	PM-10		PM-10	0.00002
- 64	Grandfathere	1 - 02/EFZ	132	DONET WE A M.G.	14000	12	V A.G. 11		1/3/9	TSP		TSP	0.00002
	 	· 	· 	<u> </u>	- 		 	 	 	SOx		SOx	9.2E-0
	-}	 	-1		-}	-}			}	NOx	40 41	NOx	0.00021
 	 	 	- 	 			 	-	 	VOC		VOC	0.00021
	 -			-	-	-	-{	-	-{	co	6,855		4.3E-0
	 			_	·		-	1	1	Lead	0,0016	Lead	7.00
	1	·			·		1	1	1	Arsenic		Arsenio	
—	1	1	 		- 	1		1	1	Beryllium		Beryllium	

Item	Permit	Source	Yeer	Source	Control	Aun Time	Stack Height		Air Flow Rate		ntial elone	Actu Emles	
No.	No.	No,	Installed	Description	Device	Hre/yr	Feet	Deg. F	SCFM	Particulate	T/Yr	Particulate	T/Yr
										Cadmlum		Cadmlum	C
									Ī	Chromlum	0,01	Chromlum	
									[Formaldeh		Formaldeh	1.4E-07
										Manganese	0.002	Manganese	
										Mercury	0.00053	Mercury	
			1				1	i — —	T	Nickel	0.0032		(
									<u> </u>	Selenium		Selenium	
							·	-		POM	0,0039		
			1			_	1	 	 	Benzene		Benzene	3.5E-0
65	Grandfathere	1-62/EP3	1951	Boller #2 & N.O.	None	360	A.G. 44	500	17578	PM-10		PM-10	0.000056
			1				<u> </u>	 	 	TSP		TSP	0.000056
			-				 		}	SOx	8.613	SOx	2.5E-0
			-				1	 	1	NOx		NOx	0.00057
							1			VOC		voc	0.00014
				1	1			1		co	6,855		0.00001
			1	<u> </u>			1	<u> </u>		Leed	0.0016	Lead	-
			<u> </u>					<u> </u>	1	Areenic		Arsenic	,
			<u> </u>	1					1	Beryllium		Berylilum	
			- 	1			<u> </u>		<u> </u>	Cadmium		Cadmium	
				†			· · · · · · · · · · · · · · · · · · ·	 	 	Chromium		Chromlum	
			_	 		_		1	†	Formaldeh		Formaldeh	
						- 	 		†	Manganese	0.002	Manganes	
								1	<u> </u>	Mercury		Mercury	
				1			-\	†		Nickel	0.0032	Nickel	
	 			1			 	 	 	Selenium		Selenium	
				<u> </u>			· 	· · · · · · · · · · · · · · · · · · ·	 	POM	0.0039	POM	
			- 		 		· 		 	Benzene		Benzene	9.4E-0
66	Grandfalhere	1-82/EP4	1951	Boller #2 & N.O.	None	82	I A.O. 44	500	17576	PM-10		PM-10	0.00008
	1		1				1	1	1	TSP	4.9	TSP	0.00008
		·				···		1	 	SOx		SOx	3.7E-0
	1	· · · · · · · · · · · · · · · · · · ·			····				 	NOx	49.51	NOx	0.00086
	1	i	1	1				1	1	voc		VOC	0.00021
		1							1	co	6,855	CO	0.00001
	1	1		1					1	Lead		Lead	
	 	 	- 	· 			-	1	-	Areenla		Areenio	
	 	 		·			 	1		Beryllum		Beryllium	+
	\	 		 			- 	1	- 	Cadmlum	0.001	Cadmium	+
	 	 	-	1			 	+	 	Chromium		Chromlum	
	† 	 		 	—	 		+		Formaldeh		Formaldeh	
	 	1					-1	-	- 	Manganese		Manganee	
	 	 		· · · · · · · · · · · · · · · · · · ·			- 	- 		Mercury		Mercury	}
	†	1		-				1	1	Nickel		Nickel	
	<u> </u>	 			····		- 	1	1	Selenium		Selenium	1
		 	<u> </u>	1		_	1	1		POM	0.0039	POM	
	1	1				- 	<u> </u>	1	1	Benzene		Benzene	1.4E-0
87	91_A_081	1-653/EP1	1001	Check weighers	Dry bag filter	200	0 A.G. 30	70	340	PM-10	0.0121	PM-10	0.0010

フ

Line 1

						T	·		Ar Flow	Potei	ntial	Actu	
Rem	Permit	Source	Year	Bource	Control	Bun Time	Stock Height	Temp	Rete		elone	Emiss	-
No.	No.	No.	Installed	Description	Device	Hre/yr	Foot	Deg. F		Particulate	T/Yr	Particulate	TNI
									· · · · · · · · · · · · · · · ·	TSP	0.01314		0.00105
66	90-A-351	1-655/EP1	1990	Powder Blender A	Certridge filter	2000	10	70	2000	PM-10	0.00876	PM-10	0.0018
				·			1			TSP	0,00876		0.0018
69	90-A-350	1-855/EP2	1990	Powder Blender B	Certildge filter	2000	10	70	2000	PM-10	0,00876	PM-10	0.0018
										TSP	0.00876	TSP	0.0018
70	Not required	1-77/EP1	I	Fugitive paint emissions	None	200	4	70	NA	VOC	3,0709	VOC	0.101687
						1				Toluene	0.7858	Toluene	0.000416
						1				Xylene	0,109	Xylene	0
				[MIBK	0.219	MIBK _	0
71	87-A-072	1-77/EP3	1987	Paint Booth	Dry filter	0	A.G. 18	70	7500	PM-10		PM-10	0
										TSP		TSP _	0
										VOC	22,88	VOC	0
			.	<u> </u>			<u> </u>	<u> </u>		Toluene		Toluene	0
		ļ		ļ			 	ļ		Xylene		Xylene	
					<u> </u>		I	ļ		MIBK		MIBK	0
72	95-A-115	1-77/EP4	1985	Paint Booth	Dry Filter	400	A.G. 18	70	136000	PM-10	1.23	PM~10	0.0015
	ļ	 	 -		 	- 	·	 	 	TSP		TSP	0.0015
		 	 		·	-{	 	ļ	·	VOC	16,937		0.013
	G	4 254/504	 	la de la verte de	None	1000	1	70		Toluene VOC	0.0100	Toluene VOC	0,00798 0,342
73	Grandfathere	1-851/EP1	1972	Cleaning Vent Paint Booth	Dry Filter	1000	A.G. 20	70	3000	PM-10	0.342	PM-10	0.00098
	10-X-310	1-034EF4	17/0	Paint Booth	DITY FILLET		<u> </u>	·/	/50	TSP	0.0727		0.00098
	 	 	 	 	· · · · · · · · · · · · · · · · · · ·	_	 	 	 	VOC		voc	0.2887
	 	 	1 -	 		- 	 		 	Chromlum		Chromium	0.000098
	 	 	 	 	 		·	 	 	MEK		MEK	0.0034
	 		 		 	- 		+		Toluene		Toluene	0,00355
75	Not required	1-852/EP3	 	Fugitive paint emissions	None	50	5 :	70	NA	voc	0,6563	VOC	0.00777
·		 	 		- - 		1		1	MEK	0.0657	MEK	0.00017
										Toluene	0.0694	Toluene	0.000184
76	Grandfathere	1-211/EP1	1960	Generator	None	1	3			PM-10	4.528704	PM-10	0.00775
										TSP	4.528704		0.007755
		\				_		.}		8Ox	4,216223		0.00722
		<u> </u>	_			_ _		-	<u> </u>	NOx	63,40185		0,108565
	ļ	<u> </u>					<u> </u>			VOC	5.162722		0.00884
	<u> </u>		-1			_}				Co	13.72197	7 0	0,023497
L.—	ļ <u> </u>	<u> </u>		<u> </u>			.		 	Benzene	0.01573	3 Benzene	0.000027
J					<u>. </u>	_		 	·{	Toluene	0.006897	7 Toluene	0,000012
ļ	ļ		- 	ļ				-		Xylene	0.00480	8 Xylene	8.2E-06
	 	 			·	-			 	Butedlene		9 Butadiene	1.1E-06 0.000034
	}	 	 		·}	- 	-}	-}	- 	formaldehy Acetaldehy		6 Formaldeh 4 Acetaldehy	
	 	 	- -	<u> </u>	- <i></i>				1	Chrolein		8 Acrolein	2.7E-06
	 	 				- 	 	+	+	PAH	0.00283		4,9E-06
77	Grandfathere	1-211/EP2	1960	Generator	None	10	6	- 	 	PM-10	4,52870	4 PM-10	0.009823
 -		1-6111618						1	 	TSP	4.528704		0.009823
	 	 			-	1	~}	- 	1	SOx	4,21622		0,009145

Line l

Rem	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Air Flow Rate	Poter Emie	ntial sions	Actu Emise	
No.	No.	No.	Installed	Description	Device	Hre/yr	Foot	Deg. F	8CFM	Particulate	1/\1	Particulate	T/Yr_
							I			NOx	63,40185	NOx	0.137515
										VOC	5,162722	VOC	0.011198
			<u> </u>			1-	[Co	13,72197	CO	0.029762
										Benzene	0.015733	Benzene	0.000034
						1	1			Toluene	0.006897	Toluene	0.000015
						1				Xylene	0.004806	Xytene	0,00001
7						1	1	1		Butadlene		Butadiene	1.1E-06
			 		†	- 	 	 		formaldehy		Formaldeh	
		 	·]		1	1		1	Acetaldehy	0.012934	Acetaldehy	0.000028
<u> </u>						1		1		Chrolein	0,00156	Acrolein	3,4E-06
		1	1				1			PAH	0,002833	PAH	6,1E-08

()

,									Air Flow	Poter	tel	Actu	al .
Item	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Rate	Emle		Emles	
No.	No.	No.	Installed	Description	Device	Hre/yr	Feet _	Deg. F	SCFM	Particulate		Particulate	T/Yr
1	Grandfathere	2-01/EP4	1960	Inert pouring	None	2000	3		900	PM-10	1.752	PM-10	0.00692
										TSP	1,752		0.00692
2	Needed	2-01/EP6		Adhesive Application	None	2000	A.G. 20	70	2400	VOC	0.07	VOC	0.071
3	88-A-027	2-01/EP7	1986	Paint Booth	Dry Filter	1500	5	70	13000	PM-10	0.0358	PM-10	0.0004
					\		T			TSP	0.0358	TSP	0.0004
				I			<u> </u>			VOC	0.27	voc	0.0035
			1		1					Ethyl glyco	0.018	Ethyl glycol	0.0027
										Vinyl Aceta	0.000922	Vinyl Aceta	0.000136
4	88-A-028	2-01/EP8	1988	Paint Booth	Dry Filter	250	5	70	1300	PM-10		PM-10	0.000021
							Ī			TSP	0.026	TSP	0.00002
										VOC	3.33	VOC	0.00
			<u> </u>							Toluene	0.832	Toluene	0.0069
			Ĭ							Xylene	1,25	Xylene	0.00
5	Needed	2-01/EP10	1968	Paint drying even	None	250	A.G. 15	160	260	VOC		VOC	0.00012
		l								Ethy glycol	0.0394	Ethy glycol	0.000513
			<u> </u>	<u> </u>			L			Vinyl aceta	0.0019	Vinyl Aceta	0.000026
6	Not required	2-01/EP20	<u> </u>	Fugitive paint emissions	None	250	1	70	NA	VOC	0.1919		0.00009
	ļ		<u> </u>			l	<u> </u>			Toluene		Toluene	0.00003
			<u> </u>				1	<u> </u>	<u> </u>	Xylene		Xylene	0.000054
							<u> </u>			Ethy glycol		Ethy plycol	0.000171
								<u> </u>	<u> </u>	Vinyl Aceta	0,00066	Vinyl Aceta	
7	Grandlathere	2-02/EP1	1953	Boller #6 fuel oil	None		A.G. 60	500	17578	PM-10	1.26	PM-10	
	<u> </u>	<u> </u>	.]		<u> </u>		<u>. </u>		<u> </u>	TSP	12,8861		
	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	SOx	340.6282	SOx	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		NOx	59.06	NOx	
	<u> </u>		.l <u></u>				<u> </u>		<u> </u>	VOC	0.3	VOC	
	Ļ	<u> </u>	<u> </u>	<u> </u>				· <u> </u>	<u> </u>	CO	5,369		
	} _	<u> </u>	<u> </u>				 	 	 	Lead		Lead	
		 						 	·	Arsenic		Areenlo	
	<u> </u>	ļ. <u></u>	. 	ļ			<u> </u>	↓	<u></u>	Beryllium	0,000675	Beryllium	
	. _	ļ		ļ	·		- 	 	 	Cadmium		Cadmium	
	 	 	 				-		 	Chromlum		Chromlum Formaldeh	
	 	 	 		·		 	 	 -	Formaldeh			
 _		 	.		- 		 	-	ļ	Manganese	0,007/96	Mangnese	
	 		- 	<u> </u>	-}	_\	-}	 		Mercury		Mercury	
	<u>- </u>	 	- -	<u> </u>	<u> </u>		- 		 	nickel		nickel	
		 		 			 	↓	 	Selenium		Selenium	
ļ <u>.</u>	10-4-	1	- 	Boller #6 Fuel all			-l <u> </u>			POM PM-10	0.00127	POM 1 PM-10	
<u>"</u>	Grandfathere	4 X-UZ/EP2	1953	DOILE FO FUEL ON	None		0 A.G. 60	500	1/5/5	TSP	12.8861		
	 	 	 		- - 			 	 	SOx	340.6282		 -
	 	 	 		- 		- -		 	NOx		NOx	
	·{	·{	-{				-	-{		VOC	38.UC	VOC	
	 	 		- 	-		- 	 	 	co	5.360	co	
	 	 	 		 			 	 	Lead		Lead	
 -		· 	- 				·	-	 	Areenlo		Areenla	

Line 2

Rem	Permit	Source	Yeer	Source	Control	Run Time	Stack Height	Temp	Air Flow Rate	Pote Emir	ntal sions	Acti Emis	
No.	No.	No.	Installed	Description	Device	Hre/yr	Foot	Deg. F		Particulate	T/Yr	Particulate	T/Y:
			Miniman	33341133411	DALIAA		1 441	CAN' L	SCI M	Beryllium		Beryllum	
							 -	 -	 	Cadmium	0.000075	Cadmium	
						 	 	ļ- 	 	Chromlum		Chromium	
						}	} 	}	}	Formaldeh		Formuldeh	
						·		 	 				'
						}	 	}	 	Manganes		Manganes	
						ļ		 	 	Mercury	0.002684	Mercury	 '
						} _	<u> </u>	} _	 	nickel		nickel	
					·	ļ 	ļ 	ļ	<u> </u>	Selenium		Selenium	
<u>_</u> }					\ <u></u>	·	}	 _	· 	РОМ	0.00127		
	Needed	2-04/EP3	1989	Adhesive Application	None	450	3	70	450	VOC		VOC	0.11
	 						·	<u> </u>		Tricioroeth		Tricioroeth	0.05
	Needed	2-04/EP4		Cleaning Vent	None	450		70		voc		VOC	0.44
11	Needed	2-04/EP19	1991	Adhesive Application	None	1500	A.G. 20	70	2142	voc		VOC	1,01
- 45						 	\ <u></u>	 	·	MEK		MEK	0.83
12	80-A-046	2-051/EP1	1980	TNT Sweet Out Tanks	Wet type scrubbe	0	A.G. 20	70	1000	PM-10		PM-10	<u> </u>
					127 7 2	·	 	 _		TSP	0.006351		
13	80-A-047	2-051/EP2	1980	TNT Washdown Area	Wel type scrubbe		A.G. 20	70	4200	PM-10	0.000054	PM-10	
				 	 		.l	<u> </u>		TSP	0.000054		
14	80-A-048	2-051/EP3	1980	TNT Work Area	Wet type ecrubbe		A.G. 20	70	1000	PM-10		PM-10	
				l		<u>.]</u>	.]	1	1	TSP	0,5989		
15	80-A-030	2-052/EP1	1980	Paint Booth	Dry Filter	500	A.G. 25	70	8400	PM-10		PM-10	0.001
					\	<u> </u>	1	<u> </u>	<u> </u>	TSP		TSP	0,001
					ļ	.I	. <u> </u>	<u> </u>	<u> </u>	VOC		VOC	0.022
					}		<u> </u>	<u> </u>		Toluene		Toluene	0.000
				<u> </u>	<u> </u>	J	.l			Xylene	0.694	Xylene	0.003
16	Not required	2-052/EP3		Fugitive paint emissions	None	500		70	NA	VOC		VOC	0.00116
										Toluene		Toluene	0.00002
					Ì		_}		_\	Xylene	0.036	Xylene	0.00016
17	Not required	2-052/EP9		Fugitive adhesive emissio	None	500			D NA	VOC		VOC	0.07
18	Grandfathere	2-052/EP16	1954	Melt Operation	Wet type scrubbs	500	3	7(2600	PM-10		PM-10	0.00028
	 		 		l	ļ		1	-	TSP	0.03547		0.00028
19	90-A-141	2-10/EP17	1990	Paint Booth	Dry Filter	<u> </u>	A.G. 21	7	1110	PM-10		PM-10	
						<u> </u>				TSP		TSP	
		Ĺ		L	<u></u>	<u> </u>	<u> </u>			VOC		VOC	
	L	L								Chromium		5 Chromlum	
					J					Toluene	0,398	7 Yoluene	
										MEK		8 MEK	
20	•	2-10/EP21	•	Explosive weighing	None	140	0	4 7	0 1800	PM-10		5 PM-10	0.01612
						I				TSP	5.4	6 TSP	0.01612
21	Needed	2-10/EP22	1989	Adhesive Application	None	1400	0	7			0,19	VOC	0.18
22	84-A-080	2-10/EP23	1984		Dry Filter		0	7	0 5610	VOC		VOC	
										Xylene		8 Xylene	
		L								Toluene	5.	2 Toluene	
23	84-A-081	2-10/EP24	1984	Paint Booth	Dry Filter	160	0 A.G. 21	7	0 450	PM-10		PM-10	0.000
		1				1				TSP		TSP	0.000
	I		T				1	1		VOC		VOC	0.0040

` `

									At Flow	Poter	ntial	Agti	اما
Nem	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Rate	Emie	elone	Emles	iona
No.	No.	No.	Installed	Description	Device	Hre/yr_	Foot	Den F	SCFM	Particulate		Particulate	TNr
										MEK		MEK	0.004
								l		Toluene		Toluene	0.00175
24	Grandfathered	2-10/EP25	1987	Explosive weighing	2 Bay Type Filters	1000	14	70	•	PM-10	0.00033	PM-10	7.2E-06
				<u> </u>						Particulate		Particulate	7.2E-06
25	Not required	2-10/EP26		Fugitive paint emissions	None	2000	4	70	NA	VOC	2.1599	VOC	0.00021
				1						Toluene	0,5291	Toluene	0.000092
						i				MEK	0,0886	MEK	0.00021
										Xylene		Xylene	0
	Needed	2-12/EP1	1969		None	2000		70	1800			VOC	0.171
27	Orandiathere o	2-12/EP2	1984	Cleaning vent	None	2000	4	70	1500	VOC		VOC	0
			<u> </u>		<u> </u>					MEK		MEK	0.168
26	84-A-082	2-12/EP5	1984	Peint Booth	Water Wash Filter	1500	A.G. 21	70	7200	PM-10		PM-10	0.0022
	 				<u> </u>	ļ	ļ <u>. </u>	ļ		TSP	0,123		0.0048
	<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ	ļ	ļ		VOC		VOC	0,3234
			<u> </u>		ļ <u> </u>	J		ļ	ļ	Ethyl Bonz		Ethy Benze	0.0416
		<u> </u>	<u> </u>		<u> </u>		 	↓		Tol 24Dilso	0,263	Tol 24Dileo	
		401000	I		100 A 100 L FM	ļ		 	 	Xylene		Xylene	0.273
27	84-A-063	2-12/EP6	1984	Paint Booth	Weter Wash Filter	1500	A.G. 21	70	/200	PM-10	0.101	PM-10	0.002
	 			<u> </u>	<u> </u>		 			TSP	0,217		0.005
		 		<u> </u>	ļ	ļ	 	ļ	 	VOC		VOC	0.294
	1	2 (2)522	 	 	1	1	1	·	}	Xylene		Xylene	0.585
30	Grandfathere	2-12/EP7	1984	Oven for surface coating	None	1500	AG. 21	160	366	VOC	10.138		0.1154
			- 	 	 	 	 	 		Eth Benzen		Eth benzen	
·	 	 	-}	\	<u> </u>	· 	·}	·}———	 	Xylene Tol 24Dileo		Xylene	0.161
	Not required	2 40/EDA	· }	Fugitive paint emissions	None	1500	 3		 			Tol 24 Dile	
31	Ligit Ledmined	2-12/EF8	 -	rugitive paint emissions	None	1300	<u>'</u>		NA .	VOC Eth Benzen	3.5177	Eth benzen	0.039972
	 		- 	· 		·\	- {	·	·	Tol 24Dileo		Tol 24Dilso	
 	 	 	-		·	·	· · · · · · · · · · · · · · · · · · ·	 	 	Xviene		Xylene	0.054147
 	 	 	 	 	- 	·	 	 	 	Eth glycol		Eth glycol	0.000025
	{	 	 	- }	1		 	 	\	Vinyl acetal		Vinyl soets	
	 	 	- 			 		+	+	MEK		MEK	0.000075
		 		-{- 	\ 		- 	 		Toluene		Toluene	0.000827
32	84-A-085	2-12/EP10	108	Paint Booth	Dry Fifter	54	<u>, </u>	70	1000	PM-10		PM-10	0.00037
<u>~</u>	01 - A - 000	2 12 11		T SITE DOVID	017 1 1141	 _	<u>'</u>	' '	1000	TSP	0.062		0.00037
	 -	 	-	· · · · · · · · · · · · · · · · · · ·	 		- 	+	 	voc		voc	0.0016
	 		 -					 	+	MEK		MEK	0.0014
 	 	 	 	<u> </u>	·		- 	+	1	Xylene		2 Xylene	0.0035
	 	 			-	 		+	 	Chromium		Chromium	0.000043
 	 	 	 	·- 	\ 	-{	 	1	- 	Eth glycol		Eth glycol	0.00048
	 	 	 			1	-	 	 	Vinyl aceta	0.0031	Vinyl aceta	
33	84-A-064	2-12/EP11	1984	Peint Booth	Dry Filter	60	61	70	1000	PM-10		I PM-10	0,001
	1	1	1	1	-	1	1	1	1	TSP	0.0304		0.001
	1		1	_	1	-1	·		1	VOC		VOC	0.0341
	1	1.	-1		·]				Toluene	0.4164	Toluene	0.0156
	T									Xylene	0,159	Xylene	0,0057

Line 2

Item	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Air Flow Rate	Poter Emis	ntal sions	Actu Emissi	
_No,	No.	No.	Installed	Description	Device	Hre/yr	Feet	Deg. F	8CFM	Particulate	T/YI	Particulate	T/Yı
34	Needed	2-13/EP1	1986	Expl processing stations	None	1400	4	70		PM-10	2,3956	PM-10	0.09785
								<u> </u>		TSP	2,3956	TSP	0.09785
35	Needed	2-13/EP2	1986	PCA Station	None	1400	4	70	3000	PM-10		PM-10	0,04895
										TSP	0.5989	TSP	0.04895
36	Grandfathered	2-13/EP5	1971	Exp weighing stations	None	600	13	70	6200	PM-10	15.768	PM-10	0.54
										TSP	15,768	TSP	0.54
37	Grandfathere	2-13/EP6	1971	Propellant loading	None	600	13	70	3000	PM-10		PM-10	0.54
						_		 		TSP	39.42		0.54
38	Omndfalhere	2-13/EP7	1985	Basecost drying oven	None	2000	A.G. 15	160	1575	voc	4,47	VOC	0.1607
										Xylene	2.97	Xylene	0.3835
39	65-A-056	2-13/EP6	1985	Paint Booth basecoat	Dry filter	2000	A.G. 15	70	5250	PM-10	0,824	PM-10	0.0707
					·					TSP	0.824	TSP	0.0707
										VOC	23.85	VOC	0.685
]	Xylene	15.86	Xylene	1,361
40	85-A-057	2-13/EP9	1985	Paint Booth topcoat	Dry filter	2000	A.G. 15	70	5250	PM-10	0,503	PM-10	0,068
										TSP		TSP	0.068
		1						Ĭ		VOC	11.159	VOC	0.752
								I		Eth benzen	0.715	Eth benzen	0.097
										Tol 24Dilso	0,1787	Toi 24Dileo	0.024
		T								Xylene		Xylene	0.6408
41	Grandfathere	2-13/EP1	0 1985	Topcoat drying oven	None	2000	A.G. 15	70	1785	VOC		VOC	0.1413
										Eth benzen		Eth benzen	0.0182
										Tol 24Dliso		Toi 24Dileo	0.0045
									<u> </u>	Xylene		Xylene	0.12
	Needed	2-13/EP1		Adhesive application area		204		70		voc		VOC	0.281
43	Grandfathere	2-13/EP1	2 1983			2040)	70		VOC		VOC	0.422
44	Not required	2-13/EP1	3	Fugitive paint emissions	None	2000		70	NA	VOC		VOC	0.0898
								1		Xylene		1 Xylene	0.4086
					<u> </u>		ļ	<u> </u>	ļ	Eth benzen		Eth benzen	0.006
		l						<u> </u>		Tol 24dileo		Tol 24Dileo	0.0015
45	86-A-061	2-13/EP1	5 1986	Propellant dumping	Dry filter	60	A.G. 27	70	2200	PM-10		PM-10	0.027
					·		<u> </u>		}	TSP	0,197	TSP	0.027
		1	Į -		1	i	. i	I	1	l	L	L	

.

Line 3

ltem	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Air Flow Rate	Poter Emie	ntial sions	Actu Emlas	
No.	No.	No.	Installed	Description	Device	Hre/yr _	Feet	Deg. F	SCFM	Particulate	T/Yr	Particulate	T/Yr
1		3-01/EP8	1976	Grit Blaster	Bag Filter	Ö	A.G. 20	70	1664	PM-10	1.257	PM-10	0
										TSP	1.795	TSP	0
2	Not required	3-01/EP15		Fugitive paint emissions	None	1000	4	70	NA	voc	74,07		0.1876
	1				- 		<u> </u>			Toluene		Toluene	0.0004
			 -				<u> </u>			Xylene		Xylene	0.0119
3	Grandfathered	3-01/EP20	1960	Paint Booth	Water wesh filter	1200		70	4200	PM-10		PM-10	0.091
										TSP	211.8		0.0849
						- 				voc	1407.3		0.671
						 				Toluene		Toluene	0,336
					·		 			Xylene		Xylene	0.266
4	•	3-01/EP7	•	Adhesive application	None	1200	3	70	2500		0.0184		0.0184
<u></u>	79-A-199	3-051/EP1	1979	TNT sweat out tanks	Wet type scrubbe		A.G. 20	70		PM-10	0.006351		0.000014
		<u> </u>			<u> </u>	1	1:::-:			TSP	0.006351		0.000014
6	79-A-200	3-051/EP2	1979	Washdown facility	Wet type scrubbe	400	A.G. 20	70	4200	PM-10	0.000438		9.8E-07
					,	1		 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TSP	0.000438		9.8E-07
7	79-A-201	3-051/EP3	1979	Work Ares	Wet type scrubbe	400	A.G. 15	70	1000	PM-10		PM-10	0.000014
	1 //				E E E G F E E E E E E E E E E E E E E E	1	 	† <u></u>		TSP	0.006351		0.000014
	•	3-051/EP13	•	Cleaning vent	None	2040	6	70	2500	VOC		voc	0.131
9	Not required	3-051/EP21	 	Fugitive cleaning fumes	None	204			NA	voc	0.4229		0.4229
10	Needed	3-051/EP26	1979			1600				PM-10		PM-10	0.064
		0 00172.20	1		1	1	1	 	1	TSP	0.16082		0.064
11	1.	3-051/EP28	 •	Explosive processing	Wet type scrubbe	2000	5	70	1075	PM-10		PM-10	0.00228
	 	0 001/2120	 	Explosive processing	1101.jpu 00.0000	1	' 	 	1	TSP	0.00627		0.00228
12	•	3-051/EP29	•	Explosive processing	Wet type scrubbe	1600	5	70	1075	PM-10		PM-10	0.00220
	 	0 001,72, 20	 	Copiosito piocotosiii	1101.17	1	1	 	19.19	TSP	0.031536		0.00356
13	Not required	3-10/FP1	 	Fugitive paint emissions	None	550	· · · · · · · · · · · · · · · · · · ·	70	NA	voc	1,5039		0.0055
	7.01.1040.100	191211	 	T Guitte paint entissions	110110		' 			Xylene		Xylene	0.0017
	 	 	 	<u> </u>	· · · · · · · · · · · · · · · · · · ·	 	- 	·	 	Toluene		Toluene	0.0033
14	87-A-071	3-10/EP2	1987	Paint Booth	Dry filter	200	A.G. 21	70	2800	PM-10		PM-10	- 0.000
		13 14 31 3	 	,,	0.1	 	1.3010.	† 	1	TSP		TSP	
	 		 	 		 	·	 		voc		voc	0.017
	 	 	 	· · · · · · · · · · · · · · · · · · ·	 	 	1	 	 	Toluene		Toluene	<u></u> 0
	 	 	 	 	t	1		1	t	Xylene		Xylene	
15	Not required	3-10/FP3	 	Fugitive cleaning & adher	None	2040	5	70	NA	VOC		VOC	0.1879
16		3-10/EP9	1087	Paint Booth	Dry filter	1100			5600	PM-10		PM-10	0.0066
		10 - 10 EF#	1			 '''	' '	' ''		TSP	0.0603		0.0066
 -	 	 	 		 	- 	 	 	 	voc		VOC	0.137
	 	 	 	 	·	 	- 	 	 	Toluene		Toluene	0.064
	 	 	 		·	 		 	 -	Xylene		Xylene	0.032
	Not required	3-10/EDE		Fugitive clean & adhesive	None	2040	<u>, </u>	70	NA	VOC		VOC	0.082
	93-A-375	3-10/EP1	1971		Wel type acrubbe		A.G. 25	70				PM-10	0.000022
	-2-V-212	13-30/EF		1141 Scianuth chaiging	inat ibba acidood	·	120.20	·	1	TSP	0.05475		0.000022
10	NPDES	3NEP1	1940	Waste treatment fugitive	None	2046	NA	NA	NA	voc		voc	0.04
· · · · · · ·		13775.	1540		1	1-207	1:	· · · · · · · · ·	· 	Chloroform		Chloroform	0.00085
Ž	Pending	3A-02/EP2	1940	Boller #6 fuel	Non●	Soc	A.G. 160	500	17576	PM-10		PM-10	0.031
	1. allowing		1070	100001 # 0 1001	1	1		1	1	TSP	12,2894		0.33528

Line 3

									Air Flow	Poter		Actu	
Hem	Permit	Source	Year	Source	Control		Stack Height		Rate	Emis	eione	Emies	
No.	No.	No.	Installed	Description	Device	Hre/yr	Feet	Deg. F	SCFM	Particulate	T/Yr	Particulate	T/Yr
										SOx	324,8498	SOx	9.106812
										NOx	56.32641		1.57905
					_	_				VOC	0.286753		0.008039
										CO	5,120583	co	0.14355
							1		-	Lead	0.017016	Leed	0,000477
		1								Arsenic	0.010194		286
							 			Beryllium		Beryllium	0.000018
		·		· · · · · · · · · · · · · · · · · · ·			 		1	Cadmium	0.0174	Cadmlum	0.000488
							1			Chromlum	0.011421	Chromlum	0.00032
			 						<u> </u>	Formaldeh		Formaldeh	0.001218
				··· —			1			Manganese		Manganese	0.000208
			· · · · · · · · · · · · · · · · · · ·			- -	 			Mercury		Mercury	0.000072
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		_}	1			nickel	0.242751	nickel	0.006805
			 	 			 			Selenium		Selenium	0.000163
		 	} -	· · · · · · · · · · · · · · · · · · ·]	1	POM	0.001211		0.000034
21	Pending	3A-02/EP3	1040	Boller #6 fuel	None	 	A.G. 160	500	17578	PM-10	1 104	PM-10	0,000000
		01-02-0	1240	DONG! # 0 100!		- 	7750: 100		1.0.0	TSP	12.2894		0
							- 	 	 -	SOx	324.8498		0
			 	<u> </u>			· · · · · · · · · · · · · · · · · · ·		 	NOx	56.32641		- 0
			 	 	·····	 -	- 		 	VOC	0.286753		0
	 	 	 		·····		-l	├	·	CO	5.120583		
	 	 					- 						
	 	 	 		·	- 			 	Lead	0.017016	Lead	0
<u>-</u>	 	 		<u> </u>			-{	 	 	Areenic	0.010194	Areenic	
						_ 		ļ		Beryllium		Berylllum	
	ļ	 						ļ	 -	Cadmium		Cadmium	0
								ļ	1	Chromium		Chromlum	O
		ļ	 						 	Formaldeh	0,043384	Formaldeh	0
	 	ļ	ļ					ļ	<u> </u>	Manganese	0.007435	Manganese	
	ļ		<u> </u>					 	<u> </u>	Mercury	0.00256	Mercury	0
			<u> </u>				<u>. </u>	<u> </u>	<u> </u>	nickel	0.242751		0
	<u> </u>	<u> </u>						<u> </u>		Selenium	0.005825	Selenium	0
	ļ <u> </u>	<u> </u>				_		 	 	POM	0.001211		
22	Grandfathere	4 3A - 02/EP13	1944	Generator	None		4 •	•	•	PM-10		PM-10	0.000473
	<u> </u>	l	.l				_1			TSP	1.035132		0.000473
									}	SOx	0.963708	SOx	0.00044
]		NOx	14,49165	NOx	0.006617
			1		1			1		voc	1.10	VOC	0,000539
		1	7					T	1	co	3,136451	CO	0.001432
	 	 		 			<u> </u>	1		Benzene	0.003596	Benzene	1.6E-06
	<u> </u>	 	1	 			1	1		Toluene		Toluene	7.2E-07
	1		1	† · · · · · · · · · · · · · · · · · · ·			 		1	Xylene	0.001096		5.0E-07
	1"	 	1	1	···· 	 	-[1	Butadiene		Butadiene	6.9E-08
			1	1			1	1	1	Formaldeh		Formaldeh	2.1E-06
	 	1	1					1	1	Acetaldehy		Acetaldehy	1.3E-06
 	 	<u> </u>	1				1	 	1	Acrolein		Acrolein	1.6E-07
	 	1	1	 			 	1	† *********	PAH	0.000646		3.0E-07

Line 3

Nem	Permit	Source	Year	Source	Control	Hun Time	Stack Height	Temp	Air Flow Rate		ntial selons	Acti Emise	
No.	No	No.	Installed	Description	Device	Hre/yr	Feet	Deg. F	8CFM_	Particulate	T/Yr	Partioulate	T/Yr
23	88-A-083	3A-051/EP12	1980	TNT grid melt	Wet type ecrubbe	0	A.G. 44	70	800	PM-10	0,0328	PM-10	0
						- 	T			TSP	0,0328	TSP	0
24	86-A-008	3A-051/EP13	1968	TNT grid melt	Wel type scrubbe	C	A.G. 44	70	800	PM-10	0.0328	PM-10	0
								1	1	TSP	0.0328	TSP	0
25	88-A-007	3A-051/EP15	1968	TNT grid melt	Wel type ecrubbe		A.G. 44	70	800	PM-10	0.03285	PM-10	0
						Į	1	Γ''''	Ţ	TSP	0.03285	TSP	0
26	93-A-319	3A-201/EP1	1993	Demil operation	Wel type scrubbe	(A.G. 36	70	1200	TSP	0.06097	TSP	0
(<u> </u>								SOx	1.522	SOx	0
		1	1							CO	9.6742	CO	0
			[3			Lead	0.000421	Lead	0
			I]						Antimony	0.000046	Antimony	0

Line 4B

Nem	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Air Flow Rate		ntial salons	Act Emle	
No.	No.	No.	Installed	Description	Device	Hre/yr	Feet	Deg, F	8CFM	Particulate	TAT	Particulate	TAI
1	Not required	48-22/EP3			None	2000	4	70	NA	voc	9.73	voc	0.03713
2	Not required	48-22/EP4		Fugitive adhesive emissio	None	1800	4	70	NA	VOC	0.0221	VOC	0.0051
3	Grandfathere	48 - 22/EP9	1982	Estane drying even	None	2000	5	160	117	VOC	29.19	VOC	0.0254
4	Pending	4B-22/EP10	1982	Estans application booth	Dry filter	2000	A.G. 17	70	2100	PM-10	2.45	PM-10	0.0093
]			TSP	2.45	TSP	0.0093
								I		VOC	156	VOC	0.594
5	Grandfathere	4B-22/EP11	1963	Clean & Adhesive booth	None	1400	A.G. 15	70	3750	VOC	0.516	voc	0.075
6	Grandfathere	4B-22/EP12	1983	Clean & Adhesive booth	None	1400	A.G. 15	70	900	VOC	0.516	VOC	0.061
								<u> </u>		MDI	0.258	MDI	0.014
		 	 			_	 	 	 	<u> </u>	<u> </u>	 	

Line 800

Hem	Permit	Source	Year	Source	Control	Pun Time	Stack Height	Temp	Air Flow Rate	Pote Emis	ntial selons	Acti Emla	
No.	No.	No.	Installed	Description	Device	Hre/yr_	Foot	Deg. F	SCFM	Particulate		Particulate	T/Yr
	Not required	600-04/EP4		Fugitive paint emissions	None	0	3	70	NA	VOC	38.34	VOC	
										Toluene	0.788	Toluene	
2	78-A-331	800-04/EP7	1978	Paint booth	Water wash filter	Ó	A.G. 25	70	8400	PM-10	53	PM-10	
						l	1		[TSP	114	TSP	
										VOC	613	VOC	
					1					Toluene	12.61	Toluene	
3	Grandfathere	800-04/EP8	1963	Grit Blaster	None	0	A.G. 25	70	1664	PM-10		PM-10	
					·		1		1	TSP	32.32		
4	Grandfathere	800-61/EP1	1985	Cleaning vent	None	450	A.G. 15	70	2956	voc	0.188	VOC	0.18
5	Grandfathere	800-61/EP2	1965		None	450	A.G. 15	70	4503	voc	0.188	VOC	0.18
6	92-A-557	800-61/EP3	1992	M605 Ammo Barricade	cartridge & heppe	100	A.G. 24	80	975.7	PM-10	0.0018	PM-10	5.2E-0
										TSP	0.00328	TSP	5.2E-0
				1						SOx	1.332	SOx	0.011
			Ţ				[CO	1.0216	CO	0.00
	1				<u> </u>	1		 	1	Lead	0.000038	Lead	1.0E-0
					1			1		Antimony	7.0E-06	Antimony	1.9E-0
				1					1	Chromium	0.000434	Chromium	0.00002
				1				1		Nickel	0.00036	Nickel	0.0000
7	91-A-249	600-192/EP8	1991	Black powder ecreening	Wet type ecrubbe	1500	A.G. 16	70	1050	PM-10		PM-10	0.00002
<u>·</u>	T	<u> </u>	1		1	1	 		1	TSP	0,03942	TSP	0.00002
		 	1	1	 	 	 	1	 			<u> </u>	
		 	 	1		 	 	1)	 	

Line 9

item	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Air Flow Rate	Pote Emle	ntial elone	Actu Emiss	-
No.	No,	No,	Installed	Description	Device	Hre/yr_	Feet	Deg. F	SCFM	Particulate	T/Yr	Particulate	_T/Yr
1	Grandfathered	9-69/EP2	1986	Cleaning vent	None	2040	A.G. 20	70	600	voc	0.149	Voc	0.034
2	Grandfathered	9-59/EP3	1986	Clean & Adhesive vent	None	2000	A.G. 20	70	600	VOC	0.1244	VOC	0.11602
										MEK	0.0023	MEK	0.0023
										Xylene	0.0003	Xylene	0.00039
										Toluene	0.00469	Toluene	0.0040
3	Not required		.	Fugitive cleaning emission	None	2040	4	70	NA	VOC	0.313	VOC	0.31
4	Grandfathered	9-591/EP1	1984	Cleaning vent	None	0	10	70	2700	voc	0.171	VOC	
	Not required	9-591/EP2	.	Fugitive cleaning emission	None	2040	4	70	NA	VOC	0.107	voc	0.10
	Needed	9-60/EP1	1989	Cleening vent	None	0	7	70	1200	VOC	0.171	VOC	
7	Not required	9-60/EP3		Fugitive cleaning emission	None	2040	4	70	NA	VOC	0.151	VOC	0.15
8	Grandfathere	9-60/EP5	1968	Adhesive application	None	2040	5	70	2700	VOC	0.0332	voc	0.003
										Hydroquine		Hydroguine	0.00002
9	Grandfathere	9-60/EP7	1968	Adhesive application	None	2040	11	70	3500	VOC	0.0332	VOC	0.003
]	Hydrogulne	0.00019	Hydroquine	0.00002
10	Not required	9-60/EP10	_1	Fugitive paint emissions	None	2040	4	70	NA	VOC		VOC	0.0272
								<u> </u>		MEK		MEK	0.006
	<u> </u>						1		<u> </u>	Toluene		Toluene	0.0062
11	Grandfathere	9-60/EP13	1980	Paint drying oven	None	2040	A.G. 22	160	200	VOC _		VOC	0.094
									I	MEK		MEK	0.0307
										Toluene	2.595	Toluene	0.026
12	60-A-134	9-60/EP15	1980	Paint booth	Dry filter	2040	A.G. 20	70	6200	PM-10	0.416	PM-10	0.0007
										TSP	0.416	TSP	0.0007
					<u> </u>					VOC	177.62	1	0.435
							<u> </u>			MEK		MEK	0.109
										Toluene		Toluene	0,100
									I	Chromium	0.911	Chromium	0.0007
13	Grandfathere	9-60/EP16	1980	Paint drying oven	None	2040	A.G. 18	70	565	VOC		VOC	0.031
										MEK		MEK	0.0102
							l		1	Toluene	2,595	Toluene	0.008

Fugitive

			1						Air Flow	Pote	ntial	Acte	Jal I
Item	Permit	Source	Year	Source Source	Control	Run Time	Stack Height	Temp	Rate	Eml	elone	Emle	lons
No.	No.	No,	Installed	Description	Device	Hrs/yr	Feet	Deg. F	SCFM	Particulate	T/Yr	Particulate	T/Yr
	Not required	IAAP/EP1		Fugitive herbic & posticide	None	25	NA	NA	NA	voc	0.1257	VOC	0.00021
										Meth chlori	0.000177	Meth chlori	0.000059
										Perchi ethy	0.000504	perchiethy	0.000168
			Ţ 		<u> </u>	1			1	24dinit tol	0.1244	24dinit tol	0.0415
2	Not required	IAAP/EP2		Fugitive dust coal pile	None	2040	NA	NA	NA	PM-10	1,905	PM-10	0.00714
								<u> </u>		TSP	1.905	TSP	0.00714
3	Not required	IAAP/EP3		Fugitive dust roads	None	2040	NA	NA	NA	PM-10		PM-10	112
	1		† -	1 - 2	1	 		 	1	TSP		TSP	160
4	Not required	IAAP/EP4	- }	Fugilive control burn	None	600	NA	NA	NA	PM-10		PM-10	4.505
<u> </u>	· · · · · · · · · · · · · · · · · · ·			*	I	1	† 	1		TSP		TSP	4.505
	· · · · · · · · · · · · · · · · · · ·		 	1		1	 	 	·	NOx		NOx	1,06
 						1	1	 		VOC		VOC	6.36
	1	1			·	-t	<u> </u>	1	1	co	13300		37.1
5	Not required	IAAP/EPS		Fugitive dust send & self	None	1000	NA	NA	NA	PM-10		PM-10	0.00239
	1	1	- 	 			†		1	TSP	0.05326		0.00239
 			<u> </u>	·	· · · · · · · · · · · · · · · · · · ·		·	 		-1		 	
]	1	1		·		1	 	 	1	1	 	 	

Hem	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Air Flow Rate	Pote: Emie	ntial elons	Actu Emles	
No.	No.	No.	Installed	Description	Device	Hre/yr	Feet	Deg. F		Perticulate		Particulate	T/Yı
	Grandfathered	BG-1/FP2	1057	Fugitive emissions	None	1 0	4	NA.		PM-10		PM-10	1/11
<u>-</u>	0.0	55 1,012	700,	100000000000000000000000000000000000000		- 	 	1100		TSP	0.0398		
								 	·	SÖx	0.133		- 0
 							 	 		NOx	0.133		0
 		<u> </u>	ļ		 	} -	 	ļ			0.0039		
 						_}	 	<u> </u>		VOC			0
			ļ					ļ <u> </u>		co	0.099		0
ri										Lead	0.000025		0
 							ļ 	 		Areenla	0.000012	Areenic	Ō
ļ							 	 		Berylllum	6.9E-06	Berylllum	0
		<u></u>						<u> </u>		Cadmium		Cadmlum	0
			!		,		<u> </u>	<u> </u>	<u> </u>	Chromlum	0.00016	Chromlum	0
i									<u></u>	Formaldeh	0.00088	Formaldeh	0
										Manganes	0.000039	Manganes	0
 		<u> </u>					<u> </u>	<u> </u>		Mercury	8.3E-08	Mercury	0
<u> </u>			 					<u> </u>		Nickel	0.00005		Ō
 			<u> </u>					1	<u> </u>	Selenium		Selenium	0
			l				<u> </u>			POM	0.000061		0
2	80-A-021	BG1991/EP1	1980	Explosive waste incinerate	Afterburner	2000	A.G. 30	250	3600		0,338		0.003025
					Gas cooler					CO	1.2479	CO	0,01106
		I			Cyclone			1		Lead	0.000055	Lead	4.9E-07
			<u> </u>		Beghouse		1	1		Chromium	0.000413	Chromlum	9.5E-07
			1		- 			1	 	Cadmlum		Cadmlum	5.8E-07
		·	1		ļ		 	1		PM-10		PM-10	0.00048
		<u> </u>	 				 	 	 	SOx		SOx	0.0025
<u> </u>		 			<u> </u>		 			NOx		NOx	0.0101
			1	 	· · · · · · · · · · · · · · · · · · ·		 	+	 	voc		VOC	0.000224
· 			 	 			 	 	 -	Arsenic		Arsenic	2.2E-07
	<u> </u>	 	 				 -	 	· · · · · · · · · · · · · · · · · · ·	Beryllium	0.000025	Beryllium	1.3E-07
			 	 	{			 		Formeldeh		Formaldehi	
 		 	 	<u> </u>	 		 		 	Mengenee		Manganese	7.3E-07
			├ ──		<u> </u>			 -	 	Mercury	0.000002	Mercury	1.6E-07
	 	 	 	ļ	ł			 	 -	Nickel	0.000105	Melculy	9.4E-07
	 	 	 	}	 		 	 	}	Selenium		Selenium	1.2E-06
 	 	 	 	ļ	 	_ 	· 	 	 		0.00014	Seleulnu	
<u></u>		100122000	·	1 3 4 5 4 5 4 5 6	l <u>.</u>		· 		l	POM	0,00013		1.1E-06
<u></u>	Not required	BG 1992/EP4	1980	CWP bypase stack	None	 	A.G. 31	NA	NA	PM-10		PM-10	0
 	 	 	 	 	<u> </u>			- 		TSP	16.2249	1188	0
! ——		 	.	<u> </u>			. 		 	SOx	2.82	SO _X	Ö
<u></u>				<u> </u>	1		·	<u> </u>	L	NOx	2.700	NOx	0
		ļ		<u> </u>	ļ			<u> </u>		CO		CO	0
<u></u>		<u> </u>	1	<u> </u>	l		<u> </u>	J	<u> </u>	Arsenio		Arsenic	0
<u></u>	ļ	ļ	1	<u> </u>	ļ					Barlum		Bedum	0
		<u> </u>	1		<u> </u>		<u> </u>	1		Cadmium		Cadmlum	0
<u></u>			<u> </u>		<u> </u>		<u> </u>			Chromlum		Chromium	0
									<u> </u>	Lead_	0.002725	Lead	0
					I					Mercury	9.5E-06	Mercury	0
<u></u>				<u></u>	1				<u> </u>	Belenium	0.000071	Belenium	0

					·	·			Ar Flow	Pote		Acti	, al
Rem	Permit	Source	Year	Source	Control	Bun Ylma	Stack Height	Tama	Rate		elone	Emiss	
No.	No.				Device	Hre/yr	Feet			Particulate	T/Yr	Particulate	T/Yr
	140,	No.	installed	Description	Dealce	- CHANAL		Deg. F	SCPM	VOC	0.004	VAC	- '/'' 0
						_	 			Formaldeh		Formaldeh	0
							i			Beryllium		Beryllium	0
					·	_	<u> </u>			Manganese		Manganese	0
 }							ļ			Nickel	0.000051	Manganess	-0
					·		 			POM	0.000051	NICKOL	0
	80-A-157	BG1992/EP5		Contam Weste Processor	Gas cooler		A.G. 31	250	40740	PM-10		PM-10	3.6357
	60-V-131	BUINNZEPS	1900	Contam Waste Processor	Cyclone	1//0	A.G. 31	250	12/02	TSP	16.2249	TCO	3.6357
		· · · · · · · · · · · · · · · · · · ·			Baghouse		 			SOx	2.826		0.636
					Definonse		 			NOx		NOx	0.607
							 			co	2.700	CO	4.8672
										Arsenic	0.000013		3.0E-06
			····				 	 -	 	Berlum	0.000027		6.1E-06
 							 		 	Cadmium		Cadmium	0.000041
						_	{		 	Chromium	0.000181	Chromium	0.000055
							 	 		Lead	0.000165		0.000036
		 	. 				 	 	 	Mercury	8.6F-06	Mercury	1.9E-06
					<u> </u>		 		 	Selenium		Selenium	0.000015
						_	 		 	VOC		VOC	0,0026
	··				 	_	 	 	 	Formeldeh		Formaldeh	0.0002
							 	 		Beryllium		Beryllium	1.6E-06
					·		· · · · · · · · · · · · · · · · · · ·	 	 	Manganese	0.0000/	Manganes	
					····		 	 	 	Nickel	0.000051	Nickel	0.000011
						_}	 		 	POM	0.000062	POM	0.000014
5	Grandfathered	11-211/EP4	1958	Generator	None	1 7	•	-	•	PM-10	4.075833	3 PM-10	0.003257
						 		 	 	TSP	4.075833		0.003257
`——							 	 	 	SOx		KOX	0.003032
ı		i———					·			NOx	57.06	NOx	0.045597
										voc	4.646	VOC	0.003731
										CO		CO	0.009869
					1			1		Benzene		Benzene	0.000011
]								1		Toluene		2 Toluene	5.0E-06
			1	1]					Xyiene	0,0047	3 Xylene	3.5E-06
									1	Butadiene	0.000593	Butadiene	4.7E-07
			<u> </u>		1		1	1		Formaldeh	0.0171	Formaldeh	0.000014
			<u> </u>		1				1	Acetaidehy	0.0116	Acetaldehy	9.3E-06
		1			1			1		Acrolein	0.001404	4 Acrolein	1.1E-06
			1						1	PAH	0.00255	5 PAH	2.0E-0
6	Grandfathere	23-211/EP3	1971	Generator	None	:	•	•	•	PM-10	8.4104	5 PM-10	0.00288
			1					1		TSP	8,4104	TSP	0.00288
	<u> </u>	1	1							SOx	7.830129	9 SOx	0.002682
										NOx		NOx	0.04032
										VOC	9.586	VOC	0.003284
					l					CO		CO	0.008727
									1	Benzene		2 Benzene	0.00001
1									1	Toluene	0.0120	Toluene	4.4E-0

							l		Air Flow	Pole	ntini	Actu	
Nem	Permit	Source	Year	Source	Control	Dun Time	Stack Height	Tamo	Rate		sions	Emles	
No.	No.	No.	Installed	Description	Device	Hre/yr	Feet	Deg, F		Particulate	T/Yr	Particulate	T/Yr
110.	140.	140.	MINETUNG	Description	Device	- CLIPATI	F 9 9 1	Den. P		Xylene	0.008925		3.1E-06
									 	Butadiene		Butadiene	4.2E-07
									 	Formaldeh		Formaldeh	0.000013
							l		 	Acetaldehy		Acetaldehy	8.2E-06
	-							 	 	Acrolein	0.002897		9.9E-07
							 	 	 	PAH	0.005261		1.8E-06
	Not required	100-101/EP3		F lab	Mana	2040	 	7.0	NA	VOC	0.09567	PAR I	
	Hot Ladnitan	100-1017623		Fugitive printing emission	None	2040	ļ -	//-	INV	Tetracheth	0.09367	Tetracheth	0.0485 0.01618
		 					·	 	 	Methychlor		Methychlor	
	•	100-211/EP1	1080	Generator	None		 	•	1.	PM-10	0.0321	PM-10	0.000775
<u> </u>	<u> </u>	100-2/1/01	1909	Generalor	110/19	- 	 		 	TSP	0.3234		0.000775
	 	<u> </u>						 	 	SOx	0.30118		0.000773
	 	 			ļ	- 	†	 	 	NOx	4.5267		0.010856
		<u> </u>					 	 	 	voc	0.3687		0.000884
					· · · · · · · · · · · · · · · · · · ·		 	 	 	co	0.960141		0.00235
	···	 				- 	·	 	 	Benzene_		Benzene	2.6E-07
	 	 	 		· · · · · · · · · · · · · · · · · · ·		 	 	 	Toluene	0.000493		1.1E-07
		 	 		 	_		 	 	Xviene	0.000343		7.8E-08
	 	 					†	 	 	Butadiene		Butadiene	1.1E-08
		 				-}	· · · · · - · · · · · · · · · · · · · · 	 		Formaldeh		Formaldehi	3.2E-07
	 	 	 	 	· · · · · · · · · · · · · · · · · · ·	· }			 	Acetaldehy		Acetaldehy	
		 					 	 	 	Acrolein		Acrolein	2.5E-08
	 	 	 		 		 	 	 	PAH	0.000202		4.6E-08
- 6	 	200-211/EP2	1987	Generator	None		•	 	· • · · · · · ·	PM-10	1.035133	PM-10	0.002718
	ļ	200-211/6-2	1901	Generator	140116		<u>'</u>	ļ	╁┈┈	TSP	1,035132	TCD	0.002718
	 	 			ļ	_}			 	SOx	0.963708		0.002718
	 	 				-}	 		 			NOx	0.00253
	 	 	ļ				-} 		 	NOx VOC	14.48	VOC	0.003096
	 				· · · · · · · · · · · · · · · · · · ·		 	 	 	CO	3,136		0.008235
	 	<u> </u>	 		 	- 		-	· [· · · · · · · · · · · · · · · · · ·	Benzene		Benzene	9.4E-06
	 	 	 	<u> </u>	<u> </u>			 -	. 	Toluene		Toluene	4.1E-06
	 	 	 		·		 	 	- 	Xylene	0.001099		2.9E-06
	 	 	 -	<u> </u>				$+ \cdots$	+	Butadiene		Butadiene	4.0E-07
	 	 	 		· 	- 			- -			Formaldeh	
	 		 				 	 	-	Formaideh		Formaiden	
	 	 	ļ. <u></u> .	· · · · · · · · · · · · · · · · · · ·	 		-	-l		Acetaldehy			
	 	·	 		 		· 	·		Acrolein		Acrolein	9.4E-07
	12. 22.	\ 			 		1	 		PAH	0.000646		1.7E-0
10	Grandfathere	300-144/EP1	1966	Boller #2 Fuel Oil	None	_	A.G. 60	500	17578	PM-10		PM-10	9
	 	 		ļ	ļ		1	·	 -	TSP	0.0086		
 	 	 	 		 		- 	 		SOx	0.029	SOx	
	 	 	 	 	·		 	·	- 	NOx		NOx	
 -	 	 	 	 	· · · · · · · · · · · · · · · · · · ·	-{	-{	 	- 	VOC	0.00088	CO	9
 	 	 	 	 	 		-	 	+	CO			
	 	 	 	<u> </u>	·		- 			Lead	2.5E-06	Arsenic	
} _	 	 	 	 	- 	_	- 	 		Arsenio		Beryllium	- 0
	<u> </u>	.1	1	<u> </u>	J		-L	ــــــــــــــــــــــــــــــــــــــ	J	Berylllum	1.55-00	I DetAilinu	<u>_</u>

Hem	Permit No.	Source No.	Year	Source Description	Control	Run Time	Stack Height	Temp	Air Flow Rate	Potential Emissions		Actual Emissions	
No.			_installed		Device	Hre/yr	Feet	Deg. F		Particulate T/Yr			
_110,	110,	110.	_Litatema.c	Dandubriou	Device	- DI WYI	Feet	Deg. P	SCEM	Cadmium	1/T/ 2 7 5 64	Particulate Cadmium	<u> </u>
										Chromium	9.7E-06	Chromium	0
-												Formaldeh	
							ļ			Formaldeh			
										Manganese	6.02-00	Manganese	0
						ļ				Mercury	1.8E-06		0
						ļ <u> </u>	<u></u>			Nickel	0.000011		0
						<u> </u>	<u></u>			Selenium		Selenium	0
							ļ. <u></u>	<u> </u>		РОМ	0,000013		0
11	Grandfathere	300-148/EP1	1972	Welding operations	None	1020	A.G. 11	70	1200	PM-10		PM-10	0.0055
				<u> </u>		l	<u> </u>		<u> </u>	TSP	0.0099		0.0055
12	Grandfathered	300-148/EP2	1972	Welding operations	None	1275	A.G. 11	70	1200	PM-10		PM-10	0.072
				<u></u>		l	ļ			TSP	0.12889		0.072
13	Grandfalhere	300-148/EP3	1972	Welding operations	None	1020	A.G. 11	70	1200	PM-10		PM-10	0.0055
						I				TSP	0.0099		0.0055
14	Grandfathere	300-148/EP4	1972	Welding operations	None	765	A.O. 11	70	1200	PM-10	0.000226		0.000126
						<u> </u>	I		L	TSP	0,000226		0.000126
15	Not required	300-148/E18		Fugitive welding operation	None	1275	4	70	NA	PM-10		PM-10	0.0015
									· · · · · · · · · · · · · · · · · · ·	TSP	0.0029	TSP	0.0015
16	Not required	300-146/E19	1968	Fugitive woodworking em	Settling chamber	2040	4	70	NA	PM-10	2,799	PM-10	1.5993
				 			1			TSP	5,3064	TSP	3.024
17	Not required	400-121/EP1	1966	Fugitive woodworking em	Cyclone collection	2040	4	70	NA	PM-10		PM-10	0,7768
						† 	 			TSP	2.576		1,4688
18	80-A-139	500-376/日1	1980	Grit blaster	Dry centrifugel	2040	A.G. 2	70	NA	PM-10		PM-10	0.01722
	1				<u> </u>	<u> </u>	 	 	1	TSP		TSP	0.0246
19	93-A-080	500-376/EP2	1993	Paint Booth	Dry filter	2000	1	70	1414	PM-10		PM-10	0.006825
<u></u>		300 5,0,0	1,,,,,	1	0.7	 	 	·'	1	TSP		TSP	0.002075
·	· · · · · ·		 	·		 	 	·	 	voc	462.93		0.5385
. ——		· · · · · · · · · · · · · · · · · · ·	 			 	 	 	 	Toluene		Toluene	0.001
	 	 	 		······	 	·		 	Xylene		Xylene	0.362
		<u> </u>		 		 	 	 	 	MEK		MEK	0,002
	 	 		 		 	 	 		Methychlor		Methychlor	0.002
 	 	 	 	 		 	 	 	+	Ethylenegiy		Ethylenegly	
20	Grandlathara	500-125/EP1	1070	Leundry dryer	Lint fifter	2040	3	230	2160	PM-10		PM-10	0.004
2 v	Otenolemeia.	300-129/EF1	1970	Familial A gillet	Cus urai	2040	<u>'</u>	230	2160	TSP	0.00091		
	A # 11		J	 	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 							0.00027
21	GISHOTATHETE	500-125/EP2	1970	Laundry dryer	Lint filter	2040	3	230	2150	PM-10		PM-10	0.0054
	 	1		<u> </u>		·	. 		····	TSP	0.01825		0.00027
22	Grandfalhere	500-125/EP3	1970	Loundry dryer	Lint filter	2040	3	230	2160	PM-10		PM-10	0.0054
	 	I	ļ	<u> </u>	ļ., <u>.</u> .	 			 	TSP	0.0182		0.00027
23	Grandfathere	500-125/EP4	1970	Leundry dryer	Lint filter	2040	3	230	2160	PM-10		PM-10	0.0054
		<u> </u>	ļ		I	 	<u> </u>	 	ļ	TSP	0.0182		0.00027
24	Grandfathere	500-125/EP	1970	Laundry dryer	Lint filter	2040	3	230	2160	PM-10		PM-10	0.0054
	ļ	ļ	<u> </u>		ļ	<u> </u>	.	1		TSP	0.0182		0.00027
25	Grandfathere	500-125/EP	1970	Laundry dryer	Unt filter	2040	3	230	2160	PM-10		PM-10	0.0054
	<u> </u>	1	<u> </u>	<u> </u>	l <u></u>	<u> </u>	<u>. </u>	<u> </u>	<u> </u>	TSP	0.01825		0.00027
26	Not required	500-1372/E1	1942	Fugitive landfil emissions	None	2040	NA	NA	NA	VOC		VOC	6.38
l .		1	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	Benzene	0.00145	Benezene	0.00145

									Alt Flow	Potential		Actua	
item	Permit	Source	Year	Source	Control	Run Time	Stack Height	Temp	Rate		etone	Emlesions	
No.	No.	No.	Installed	Description	Device	Hre/yr_	Feet	Deg. F		Particulate T/Yr		Particulate T/Yr	
			311010			11111121	1 3 3			Chloroform		Chloroform	0.00005
				<u> </u>		· · · · · · · · · · · · · · · · · · ·	† 			Ethylendlet		Ethylendich	0.00325
					·		 			Methichio	0.0222	Methichio	0.0222
						 	 			Perchloeth		Perchiceth	0.01145
						 				Trichlethy		Trichlethy	0.00375
			,		 	 	 	 		Vinyi ohio		Vinyl chio	0.00373
					- ·- ·- ·- ·- ·- ·	 	 	 -			0.0002	VINYI CHIO	
77	81-A-150	500-139/EP1	4004	Boller Main Coal fired	Electronic No. 200 al		A.G. 150	350	00100	1,1dlchleht PM-10	0.00035	1,1dichieht PM-10	0.00035
	91-X-130	200-139/6-1	1901	Bollet Well Cost aled	Electrostatic preci	2000	A.G. 150	350	89120		16.05	PM-10	3,53
			····				 	 		TSP			3.92
	 -					ļ	 			SOx	944.3		230,46
						 	 			NOx	244.9	NOX	59.77
						 	 			VOC	0.69	VOC	0.218
						 		├ ─	ļ	co	89.39		21.82
	 	ļ				ļ	 			Lead		Lead	0.003
										Arsenia		Arsenic	0.002
						 	 			Beryllium		Beryllium	0.0006
							 	ļ	ļ	Cadmium		Cadmlum	0.0002
	ļ					.	ļ		 	Chromium		Chromium	0.006
	ļ	ļ					· 	 	ļ	Formaldeh	0.097	Formaldeh	0.024
	 	 				↓		↓	ļ	Manganese	0.111	Manganes	0.027
	ļ					<u> </u>	ļ	 	 	Mercury	0.005	Mercury	0.001
	ļ					ļ	ļ <u>.</u>	ļ		Nickel		Nickel	0.001
						ļ		 	 	Selenium	0,002	Selenium	0.0004
	1			I				 		POM	0.000063	POM	0.000015
26	81 - A - 150	500-139/EP1	1961	Boiler #2 Main Coal fired	Flectiostatic biec	2352	A.G. 150	350	99120	PM-10		PM-10	3.069
	ļ <u>.</u>	ļ	.		- ·	.			ļ	TSP	16.05		3.41
					····		- 	<u> </u>		SOx	944.3	SOx	200.8
						ļ		 		NOx		NOx	52.1
	 	ļ				ļ		ļ	 	VOC		VOC	0.19
	 	ļ <u>.</u>		<u> </u>	· ·- ·· ·	.l	<u> </u>			СО	69,39	CO	19.02
	 	 	 			 	 	 	 	Lead		Lead	0.002
	 	 				 		 	 -	Arsenio		Areenio	0.002
	 		}		·	 	·\	 		Beryllium	0.002	Beryllium	0.0005
	ļ. <u></u> .	 	 				_	 		Cadmium	0.0007	Cadmlum	0.0001
	ļ	 	ļ		ļ. 	 	-	 	·	Chromlum		Chromlum	0.000
	<u> </u>	ļ	<u> </u>		ļ. <u></u>	ļ		ļ	.l	Formaldeh		Formaldeh	0.0
	ļ		<u> </u>					<u> </u>	<u> </u>	Manganese		Manganes	0.024
		ļ	ļ			ļ		<u> </u>	ļ	Mercury	0.005	Mercury	0.001
		ļ	ļ	<u></u>	Į			<u> </u>	ļ	Nickel		Nickei	0.00
	ļ		 			1		<u> </u>	1	Selenium		Selenium	0.0004
	 		ļ <u>.</u>			.		_		POM	0.000063	POM	0.000013
29	Not required	500-139/EP2	1961	Bypass stack mein bollers	None	<u> </u>	A.G. 150	NA	NA	PM-10	601.82	PM-10	(
ļ	<u> </u>	ļ	<u> </u>	. <u></u>		·	-	<u> </u>	-	TSP		TSP	
	 	ļ <u>.</u>	ļ			-	<u> </u>	.	ļ	80x	1888.6	80x	(
	ļ		ļ	<u> </u>	ļ — — — — — — — — — — — — — — — — — — —		· 	 	.	NOx		NOx	
l	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	VOC	1.76	VOC	(

• '

									Air Flow	Potentia		Actual	
No.	Permit No.	Source	Year	Source Description	Control	Run Time	Stack Height	Temp	Rate	Emla	alons	Emissions	
		No.	installed		Device	Hre/yr	Foot	Deg. F		Perticulate T/Yr		Particulate	T/Yr
									7.7.	CO	178.78		
					······································	_				Lead	0.446		
							<u> </u>			Areenic		Arsenic	
					- 					Beryllium		Beryllium	
	T					1	 '			Cadmium		Cadmium	
										Chromium		Chromlum	
			-				1	 	 	Formaldeh		Formaldeh	
	-						 	 		Manganese	0.219	Manganese	
								 	<u> </u>	Mercury		Mercury	
						1				Nickel	0.244	Nickel	
				· · · · · · · · · · · · · · · · · · ·						Selenium		Selenium	
							 	<u> </u>	-	POM	0.0026	POM	
30	Grandfathere	500-139/EP4	1972	Generator	None			•	•	PM-10	12.939	PM-10	0.00590
										TSP	12.939	TSP	0.00590
									1	SOx	12.046	SOx	0.00550
									1	NOx	181.14	NOx	0.08271
									1	voc	14.75	VOC	0,00673
										СО	39.2	co	0.01790
				<u> </u>						Benzene	0.01207	Benzene	0,00002
								<u> </u>	1	Toluene		Toluene	9.0E-0
							1	†	 	Xylene	0.003688	Xylene	6.3E-0
							1	1		Propylene	0.036877	Propylene	0,00006
									1	Butadiene		Butadiene	8.6E-C
	1							1	1	Formaldeh		Formeldeh	
]			1					1	Acetaldehy		Acetaldehy	
-							1			Acrolein		Acrolein	2.0E
				1				<u> </u>	† 	PAH	0.002174	PAH	3.7E-(
31	Grandfathere	500-144/EP1	1953	Boller #6 fuel of	None	(A.G. 60	500	17578	PM-10	0.04	PM-10	
										TSP	12.88	TSP	
										SOx		SOx	
									1.	NOx	59.06	NOx	
				1						VOC		VOC	
										CO		CO	
			I				1			Lead	0.0178	Lead	
		i		T			Ţ	1		Arsenic		Arsenio	
		l								Beryllium		Beryllium	
								1	1	Cadmium		Cadmlum	
		I								Chromium		Chromium	
	1	1		1	 				1	Formeldeh		Formaldeh	
	Ī ·			<u> </u>			<u> </u>		1	Manganese		Manganes	
		[1			1			1	Mercury		Merousy	
										Nickel	0.2545	Nickel	
		<u> </u>			1					Selenium	0.006108	Selenium	
										POM	0.00127	POM _	
32	Grandfathere	500-144/日2	1942	Generator	None		5 4	•	•	PM-10	0,2587	PM-10	0.00014
			<u> </u>							TSP	0,2587	TSP	0.00014

X